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The bacterial enzyme nitrogenase achieves the reduction of

dinitrogen (N2) to ammonia (NH3) utilizing electrons, protons,

and energy from the hydrolysis of ATP. Building on earlier

foundational knowledge, recent studies provide molecular-

level details on how the energy of ATP hydrolysis is utilized, the

sequencing of multiple electron transfer events, and the nature

of energy transduction across this large protein complex. Here,

we review the state of knowledge about energy transduction in

nitrogenase.
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Introduction
The bacterial enzyme nitrogenase, which is known to

occur in Mo, V, and Fe forms [1–5], reduces dinitrogen

(N2) to ammonia (NH3) utilizing protons, electrons, and

the hydrolysis of ATP. Since the discovery of these

enzymes, there has been great interest in understanding

their mechanism in order to gain insights into how nature

solved the problem of reducing one of the most stable

molecules, N2, at ambient temperatures and pressure.

Recent progress provides significant new insights into the
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N2 binding event and how the reduction reaction is

achieved [6�,7–10]. Here, we review new findings that

are unravelling the complexities of how electrons traverse

the nitrogenase two-component system to achieve the

reduction of bound N2 and how energy is transduced from

the hydrolysis of nucleotides in the process.

Nitrogenases comprised two proteins, one being a reduc-

tase component known as the Fe protein, that contains a

single 4Fe-4S cluster and two ATP binding sites. A

second catalytic protein, known as the MoFe-protein,

VFe-protein or FeFe-protein, houses an electron transfer

P cluster as well as the active-site metal cofactor (FeMo-

co, FeV-co, and FeFe-co) (Figure 1). The Mo-nitroge-

nase system is the focus of this review, and insights into

this system are likely to be applicable to the other

systems. We know that an Fe protein, with two bound

ATP molecules, associates with one-half of the MoFe

protein, and that this association initiates a series of

events that result in the transfer of an electron from

the Fe protein to FeMo-co, the hydrolysis of two ATP

molecules to two ADP and two Pi, release of phosphate,

and finally the dissociation of the Fe protein (oxidized

and with two bound ADP) from the MoFe protein

(reduced by one electron) [1,11]. This cycle of events

is repeated in order to accumulate electrons on the active

site, with four cycles needed to achieve the state that

binds N2 and eight cycles to achieve the complete reduc-

tion of N2 and release of one H2. The order and nature of

the events that occur during this transient association of

the two component proteins, often referred to as the Fe

protein cycle, is one of the great mysteries of nitrogenase

function. Studies during the last several years have added

to the considerable body of knowledge about the Fe

protein cycle [1], filling in and refining our understanding

of nitrogenase function.

ATP hydrolysis and electron transfer
Recent studies have contributed four significant insights

into the key events that occur in the Fe protein cycle,

including that: firstly electron transfer occurs ahead of

ATP hydrolysis [12��]; secondly the overall rate limiting

step is not component protein dissociation, but rather Pi

release [13��]; thirdly the electron transfer events are

staged to occur in the order, conformationally gated P

cluster ! FeMo-co first, followed by rapid Fe protein !
Pox (together referred to as ‘deficit-spending’ electron

transfer) [14]; and finally the two halves of nitrogenase
www.sciencedirect.com
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Figure 1
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Nitrogenases. Schematic diagram for the three forms of nitrogenase, where M is Mo, V, or Fe (a). Shown are the structures for the active site

FeMo-cofactor [33] and FeV-cofactor [34] determined by X-ray crystallography and a proposed structure for the FeFe-cofactor (b). It is noteworthy

that some recent work is indicating that changes in the structure of FeMo-co and FeV-co can occur upon addition of electrons and/or upon

binding of substrates and inhibitors, suggesting structural dynamics of the cofactor is part of the mechanism.
MoFe protein function through negative cooperativity,

with each side influencing activity on the opposite side

[15��].

The earliest studies of nitrogenase revealed that the

hydrolysis of 2 ATP to 2 ADP + 2 Pi was coupled to

the transfer of one electron from the Fe protein into

the MoFe protein [16–18]. This prompted the widely

accepted model wherein the energy from hydrolysis of

ATP was being used to drive electron transfer in nitroge-

nase [1]. Studies over the last few years have upended this

model by showing that ATP hydrolysis occurs after the

electron transfer events [12��]. Indeed, an early theoreti-

cal study by Beratan et al. [19] concluded that ATP

hydrolysis energy should come at the end of the cycle,

to drive the proteins apart. That model is consistent with

the new experimental studies placing electron transfer

ahead of ATP hydrolysis. The key steps of the new model

are summarized in Figure 2. It shows that ATP binding to

the Fe protein is essential to activating Fe protein for
www.sciencedirect.com 
binding to the MoFe protein, while the energy of hydro-

lysis of ATP is used to weaken the interaction between

the Fe protein and the MoFe protein for dissociation at

the end of the cycle, with Pi release being the rate

limiting step [13��].

On the basis of continuum electrostatics analysis, it was

earlier proposed that ATP binding to the Fe protein

energized the 4Fe-4S cluster for electron transfer by

desolvation of the 4Fe-4S cluster caused by docking of

the Fe protein with the MoFe protein, and that the

protein-protein complex is made more stable by about

the same amount [19]. ATP binding to the Fe protein also

drives the 4Fe-4S cluster several Angstroms closer to the

protein surface [20�,21–23] and strengthens its electronic

coupling to the P cluster of the MoFe protein. It is

possible that the docking of the Fe protein to the MoFe

protein induces a conformational change within the

MoFe protein that opens the gate for electron transfer

from the P cluster to FeMo-co. The docking may further
Current Opinion in Chemical Biology 2018, 47:54–59
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Figure 2
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Scheme for the key events during electron transfer between the nitrogenase Fe protein and the MoFe protein. The MoFe protein is shown as one

ab pair (right side) containing a P cluster (P) and FeMo-co (M). The Fe protein dimer (left side), with one [4Fe-4S] cluster (R or ox) and two bound

ATP, associates with the MoFe protein (top). This association initiates a gated electron transfer event from the P cluster to FeMo-co with a rate

constant (kET) of 140 s�1 at 25�C, with rapid follow up electron transfer from the Fe protein to the oxidized P cluster. The next event is ATP

hydrolysis with a rate constant kATP of 70 s�1, followed by Pi release with a rate constant kPi of 16 s�1, and then the fast dissociation (kdiss) of the

two proteins.
accelerate electron tunneling from the Fe protein to the

MoFe protein beyond simple distance shortening. Alter-

natively, the gating may also be accomplished by a

Marcus free energy effect created by changing solvent

exposure or cofactor structure (or both effects may be at

play). Given the osmotic pressure dependence of the

gating process, it is likely that water molecules at this

dynamical interface play a role in electron flow between

the cofactors (as well as through their influence on cou-

pling or redox potentials).

Deficit-spending ET
One of the most intriguing aspects of electron transfer

within nitrogenase is the order of the two electron transfer

events involving the FeS cluster of the Fe protein, the P

cluster, and FeMo-co. Recent work showed that following

the association of the Fe protein with the MoFe protein,

one electron is transferred from the Fe protein to the

MoFe protein in a process that is conformationally gated

[24]. From structures of nitrogenase complexes of the two

component proteins [25,26], it is clear that the P cluster in

the MoFe protein is involved as an intermediate in the
Current Opinion in Chemical Biology 2018, 47:54–59 
transfer of the electron to the FeMo-cofactor [27,28].

Early models assumed that the Fe protein would first

transfer an electron to the P cluster [1]. A problem with

this model is that the resting P cluster (designated as PN)

has all Fe atoms in the ferrous oxidation state [29]. Since

there are no known examples of reduction of enzyme Fe-

S clusters below the ferrous oxidation state, instead, gated

P cluster to FeMo-co electron transfer occurs first, fol-

lowed by rapid reduction of the oxidized P cluster by the

Fe protein. The ‘deficit-spending’ electron transfer

model was given support by studies on MoFe proteins

using amino acid substitutions that were consistent with

such a model (Figure 3) [14].

While a reasonable model, the details of how this ‘deficit

spending’ process would be achieved remain unknown.

To a first approximation, the ‘deficit-spending’ electron

transfer model would require that Fe protein docking to

the MoFe protein activates electron transfer from the P

cluster to the FeMo-cofactor. Given that the Fe protein

docking interface is far from the P cluster [25,26], the

activation of electron transfer from the P cluster initiated
www.sciencedirect.com
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Figure 3
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Deficit spending ET in nitrogenase. Shown is the Fe protein (left) and
1/2 of the MoFe protein (right) with the metal clusters R for the 4Fe-4S

cluster, P for the 8Fe-7S cluster, and M for FeMo-cofactor. The first

ET event is proposed to be from the P cluster to the M cluster, while

the second electron transfer event is from the Fe protein to the

oxidized P cluster.
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Negative cooperativity in nitrogenase. The left half of the complex is

shown after ET, ATP hydrolysis, and Pi release. The right side is held

up with the Fe protein bound, but with ET and ATP hydrolysis

suppressed through negative cooperativity.
at the protein-protein interface, must be achieved

through protein conformational changes that are propa-

gated deep in the MoFe protein. Such changes could

activate electron transfer by changing parameters to favor

the electron transfer event. Parameters that seem most

likely to be changed would be the driving force for the

electron transfer (the difference in the midpoint reduc-

tion poential Eo0 for the donor and acceptor) or the

coupling between the donor and acceptor [30,31]. A

model of this kind can be refined by computation to

examine possible conformational changes that could be

used as ‘levers’ to communicate from the Fe protein-

MoFe protein docking interface to control the electron

transfer events at the P cluster.

Examination of the environment of the P cluster suggests

models to explain the transduction of mechanical energy

from protein–protein docking to electrochemical energy

to drive electron transfer, through changes in the ligation

or environments of the P cluster [32] or FeMo-co.

Half-sites reactivity in nitrogenase
The complexity of the overall energy transduction land-

scape in nitrogenase is enhanced by a recent unexpected

finding showing negative cooperativity between the two

symmetric halves of nitrogenase [15��]. Quench-flow

studies find during pre-steady state, that the entire nitro-

genase complex only shows the hydrolysis of 2 ATP (not

4) and the transfer of one electron (not two) in the initial

time after mixing (Figure 4), contrary to the expectation if

the two halves of the complex functioned independently.

Even though a fully charged Fe protein is already bound

on the opposite end of the MoFe protein, only the first

side proceeds through the ET and ATP hydrolysis cycle

[15��]. The second side is partially ‘held up’ by ‘negative

cooperative’ control across the entire complex. The effec-

tive outcome of this control is that only after the first side

has completed the Fe protein cycle is the second side

partially released to proceed through a full Fe protein

cycle. It is not clear if this back and forth mechanism
www.sciencedirect.com 
continues for many cycles or if the system proceeds

stochastically at longer times. Coarse grained modeling,

based on a Gaussian network, reveal connection between

the Fe protein on one end, through the MoFe protein, to

the Fe protein on the other end [15��]. Thus, the begin-

nings of a mechanism for coupling of events on the two

opposite ends of the nitrogenase complex can be envi-

sioned, although why such communication occurs

remains unknown. It seems reasonable that the commu-

nication across the complex is part of the energy trans-

duction in the system. Resolving the nature and potential

advantages of this cross-protein communication will be an

important topic for future research, as it may reveal how

nitrogenase manipulates free-energy to control electron

transfer and to accomplish a challenging multi-electron

substrate reduction.

Conclusions and prospects
Understanding how nitrogenase couples the energy from

ATP binding and hydrolysis to catalyze electron transfer

and substrate binding/reduction continues to be a signifi-

cant challenge. Building on decades of foundational work

[1,11], recent studies have created the framework for an

understanding of the Fe protein cycle. It is now clear that

the energy from ATP hydrolysis is used at the end of the

cycle [12��], likely to drive the dissociation of the Fe

protein from the MoFe protein. Further, it is clear that the

events associated with Pi release after ATP hydrolysis are

rate limiting for the entire cycle [13��]. Recent studies

also support a deficit-spending electron transfer model,

wherein the binding of the Fe protein to the MoFe

protein stimulates gated electron transfer from the P

cluster to FeMo-co, with follow-up electron transfer from

the Fe protein to the oxidized P cluster [14]. Significant

work remains to develop a molecular-level understanding

of how Fe protein binding activates the electron transfer

reactions and how ATP hydrolysis and Pi release desta-

bilize the complex allowing spent Fe protein to dissoci-

ate. Finally, the observation of negative cooperativity

associated with conformational coupling across the
Current Opinion in Chemical Biology 2018, 47:54–59
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nitrogenase complex [15��] opens an important new fron-

tier for furthering our understanding of energy transduc-

tion in nitrogenase.
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