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ABSTRACT 
 

This paper presents a computer vision-based approach for automatically detecting the 
presence of fire in video sequences. The algorithm not only uses the color and movement 
attributes of fire, but also analyzes the temporal variation of fire intensity, the spatial color 
variation of fire, and the tendency of fire to be grouped around a central point.  A cumulative 
time derivative matrix is used to detect areas with a high frequency luminance flicker.  The 
fire color of each frame is aggregated in a cumulative fire color matrix using a new color 
model which considers both pigmentation values of the RGB color and the saturation and 
the intensity properties in the HSV color space.  A region merging algorithm is then applied 
to merge the nearby fire colored moving regions to eliminate the false positives.  The spatial 
and temporal color variations are finally applied to detect fires.  Our extensive experimental 
results demonstrate that the proposed system is effective in detecting all types of 
uncontrolled fire in various situations, lighting conditions, and environment.  It also performs 
better than the peer system with higher true positives and true negatives and lower false 
positives and false negatives. 
 
Keywords: video fire detection, cumulative time derivative matrix, cumulative fire color 
matrix, spatial color variation, temporal color variation. 
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1 INTRODUCTION 

 
Smoke, fire, and flames are one of the leading hazards affecting everyday life around the world.  Fires 
and burns are the second most common cause of death to children under 10 in the USA, second only to 
automobile crashes (Bowen, 2002).  Smoke detectors have been widely used to an extent to raise alarms 
for saving people’s life.  However, faulty smoke detectors cause many of deaths resulting from smoke 
and fire.  In addition, particle smoke detectors cannot be used reliably to detect fires in large spaces 
including auditoriums, warehouses, and outdoor spaces. 

Other highly dependable fire detection systems use expensive infrared cameras.  However, with the 
increased popularity and use of standard surveillance cameras, a fire detection system that is capable of 



 

 

utilizing these already installed cameras to reliably detect fires in large spaces could be invaluable.  
Computer vision algorithms for automatic video fire or smoke detection have been developed for 
applications in tunnels, aircraft hangars, ships, etc (Foo, 1996; Gottuk et al., 2006; Lloyd, 2000; Wieser 
and Brupbacher, 2001).  They are dedicated to small, cluttered spaces by using various environment 
conditions that may occur in the specific applications to establish a range of flaming fire sources.  But, 
none of these algorithms are robust and flexible to be applicable in standard surveillance cameras 
enabled automatic video fire detection.  Therefore, a significant amount of research has been focused on 
developing reliable video fire detection systems in any large, open environment.  Several related 
computer vision based fire detection systems are briefly reviewed here.  Healey et al. (1993) propose to 
identify fire using only color clues.  Based on the fact that fire flickers with a certain range of frequency, 
two independent systems (Liu and Ahuja, 2004; Marbach et al., 2006) add an analysis of temporal 
variations of fire to improve detection performance.  In (Liu and Ahuja, 2004), fast Fourier transforms 
(FFT) of temporal object boundary pixels are computed to represent shapes of fire regions.  In (Marbach 
et al., 2006), temporal variation of fire intensity is captured to select candidate fire regions and 
characteristic fire features are extracted to determine the presence of fire or non-fire patterns.  Töreyin et 
al. apply hidden Markov models (HMM) (2005) and the wavelet transformation (2006) to extract spatial 
color variations to improve detection accuracy and reduce the false positives.  These systems achieve 
promising results on their data sets.  However, they cannot simultaneously handle the following two 
conditions: 

• Complicated lighting conditions resulting from day and night, artificial lights, light reflection, or 
shadows. 

• Complex scene with objects and/or people moving in velocities and sizes similar to fire. 

The method presented in this paper addresses the above conditions and is flexible enough to be used in 
almost any condition in a multitude of environment.  Specifically, our proposed method is reliable in all 
lighting conditions by incorporating both pigmentation values of the RGB color and the saturation and the 
intensity properties in the HSV color space.  It is fairly apt at considering moving fire-colored objects as 
non-fire by using both spatial and temporal color variations in a novel way.  It also analyzes the grouping 
of fire regions to further eliminate false alarms.  In general, the proposed method works with a video 
stream by extracting a short clip, analyzing it for fire, and then extracting another clip for analysis.  If a fire 
is detected within the clip, an alarm is issued.  The remaining of the paper is organized as follows: 
Section 2 explains the proposed fire detection algorithm in detail.  Section 3 demonstrates the 
effectiveness of our proposed system and shows the experimental results to compare our proposed 
system with a peer system (Töreyin et al., 2006).  Section 4 concludes the paper and presents the future 
direction. 

 

2 THE PROPOSED FIRE DETECTION ALGORITHM 
 
The block diagram of our proposed fire detection algorithm is shown in Fig. 1.  Specifically, it consists of 
the following six steps:  (1) Flicker detection: Detect areas with a high frequency flicker using a 
cumulative time derivative matrix of luminance.  (2) Color detection: Aggregate the fire color of each 



 

 

frame using a cumulative fire color matrix by considering both pigmentation values of the RGB color and 
the saturation and the intensity properties in the HSV color space.  (3) Region merging: Merge the fire 
colored moving regions if they are closely located.  (4) Spatial color variation: Measure spatial color 
variations on regions passing the first three steps to eliminate false-alarms raised by moving objects with 
a solid flame-color.  (5) Temporal color variation: Measure temporal color variations on the same regions 
passing the first three steps to track the temporal color changes of each pixel in the fire candidate 
regions.  (6) Final verdict: Decide the presence of fire in a video clip.  Each step is explained in detail in 
the following subsections. 

 

2.1 Flicker Detection 
 

Two properties of fire (Hamins et al., 1992) are used to design the flicker detection algorithm to find the 
candidate fire regions.  These two properties are: 

• Fire tends to flicker with a frequency between one to ten Hz. 

• Fire typically is the strongest source of light and therefore the luminance intensity near fire tends 
toward the maximal value. 

In our system, we first use the time derivative of the luminance to track a moving object.  The time 
derivative for a moving object is typically non-zero while the time derivative for a static environment is 
typically zero.  We then use the cumulative time derivative (CTD) of the luminance to estimate the 
tendency for fire to periodically flicker around a region.  This CTD incorporates both the cumulative 
strength and the luminance weight to accommodate the above two properties of fire, respectively.  
Specifically, the cumulative strength is proportional to the number of frames in the video clip.  The 
luminance weight gives more weight to a bright pixel to improve the detection robustness.  This CTD of 
the luminance is also normalized and processed to keep relatively large values.  That is, we ensure that a 
fire border has a larger CTD response than a non-fire region. 

The details of the flicker detection algorithm are: 

1. Convert each frame Fi (1≤i≤N) of a video clip from the RGB color space to the YUV color space, 
where N is the total number of frames in the video clip and Yi(x, y) represents the luminance 
color component at x-row and y-column of frame Fi. 

2. For each position (x, y) of frame Fi (2≤i≤N), perform the following operations: 
a. Compute the luminance time derivative by: 

                                                              |),(),(|),( 1 yxYyxYyxD iii −−=                                                        (1) 

b. Compute the CTD by: 
                                                       ),(),()1(),(),( 1 yxDyxwyxCTyxCT iiii αα −+= −                                       (2) 

where: 
• α represents the cumulative strength and is set to be (N-1)/N in our system.  This 

setting always allows a larger cumulative strength to be set for a video with more 
frames.  That is, the more frames in the video, the more accurate information the CTD 
carries, and the larger cumulative strength for each frames in the video.  



 

 

• wi(x, y) is the luminance weight, which is proportional to the luminance that is brighter 
than the average luminance intensity δ of frame Fi.  It is computed as: 
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• CT1(x,y) is initially set to be all 0’s. 
c. Normalize CTi(x, y) to an 8-bit luminance range (i.e., 0≤CTi(x, y)≤255) and find its average 

Ave. 
d. Reset the pixels in the normalized CTi(x, y), whose intensity values are below Ave, as 0’s.  

This processed normalized CTi(x, y) is used by Equation (2) to compute the CTD in each 
iteration step. 

3. Set all pixels in CTN, whose values are less than the average of non-zero values in CTN, to 0’s to 
keep the strong moving regions. 

Fig. 2 demonstrates two typical fire frames (e.g., one at night and one in the day) and the CTD of the two 
video clips containing these fire frames.  It clearly shows that the borders of the flame regions have large 
CTD values.  The static environment has small CTD values, as shown in dark in both CTD results.  The 
center of night fire, a highly saturated luminance component, is dark due to less motion in center (i.e., the 
CTD at the center of fire is close to zero). 

 
2.2 Color Detection 

 
Other fire detection algorithms (Liu and Ahuja, 2004; Marbach et al. 2006; Töreyin et al., 2005; Töreyin et 
al., 2006; Chen et al., 2003; Phillips et al., 2000) exclusively use the pigmentation values of the RGB 
color to determine the potential fire regions.  However, we notice that the saturation level and the intensity 
value in the HSV color space also play an important role in determining the potential fire regions in 
different lighting conditions and environment.  Fig. 3 illustrates this observation using two different types 
of fire as shown in Fig. 2, i.e., fire at night and fire in the day.  This figure shows that the average 
saturation levels of fire are relatively low if fire is the main source of light in the video.  The average 
saturation levels of fire are relatively high if fire is not the main source of light in the video.  The intensity 
values of fire tend to be relatively high in most cases regardless lighting conditions.  Therefore, in our 
proposed system, we utilize both pigmentation values of the RGB color and the saturation and the 
intensity properties in the HSV color space to detect fire. 

For each frame in a video clip, we perform the following operations to estimate fire colored regions.  First, 
we consider fire potentially falling into a red to yellow range using the relationships among red, green, 
and blue components (Chen et al., 2003) shown in Fig. 4.  Second, we use the saturation values of 
potential fire derived from the first step to measure the membership of fire (i.e., the possibility of being 
fire) based on the average saturation levels of potential fire.  Third, we assign a larger membership to a 
brighter spot in the value (intensity) component of the HSV color space.  Fourth, we estimate the 
membership of fire by multiplying the fire membership in saturation and intensity components.  This 
additional consideration of saturation and intensity components effectively identifies all fire colored 
regions in different lighting conditions and environment by assigning pixels of strong intensity and 



 

 

saturation values with a high possibility of being a fire.  Finally, we compute a cumulative fire color (CFC), 
which is akin to the CTD, to estimate the fire colored regions of the video clip. 

The details of the color detection algorithm are: 

1. Convert each frame Fi (1≤i≤N) of a video clip from the RGB color space to the HSV color space, 
where N is the total number of frames in the video clip and Ri(x, y), Gi(x, y), Bi(x, y), Si(x, y), and 
Vi(x, y) represent the red, green, blue, saturation, and value components at x-row and y-column 
of frame Fi in RGB and HSV color spaces, respectively. 

2. For each position (x, y) of frame Fi (2≤i≤N), perform the following operations: 
a. Create a fire color mask, FCMi(x, y) by: 
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where η is experimentally decided to be 180 since the fire color tends to fall into a red to 
yellow range and the value of 180 in the red component represents more yellowish color. 

b. Create a new saturation matrix by:  
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c. Compute the saturation level SLevel by averaging all the non-zero elements in '
iS . 

d. Compute the fire membership in the saturation component by: 
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e. Compute the fire membership in the value component based on the average intensity 
value IntensityAve of Vi: 

                                        
⎩
⎨
⎧ >

=
otherwise

veIntensityAyxVifyxV
yxFV ii

i 0
),51.0max(),(),(

),(                                (7) 

f. Estimate the fire membership by:  
                                                         ),(),(),( yxFVyxFSyxFCSV iii ×=                                               (8) 

g. Set all the pixels in FCSVi(x, y) whose values are less than the average of non-zero values 
in FCSVi as 0’s. 

h. Compute the cumulative fire color by: 
                                                ),()1(),(),( 1 yxFCSVyxCCyxCC iii αα −+= −                                        (9) 

where α represents the cumulative strength, which has the same meaning as the α used in  
the flicker detection algorithm and is set to be (N-1)/N in our system; and CC1(x, y) is 
initially set to be 0’s. 

3. Set all pixels in CCN, whose values are less than the average of non-zero values in CCN, to 0’s to 
keep strong fire colored regions. 

The highly likely fire regions as of this point by combining flicker and color detection are defined as: 
                                                            ),(),(),( yxCCyxCTyxFire NN ×=                                               (10) 

Similarly, we maintain strong fire regions by keeping the pixels whose values are larger than the average 
of non-zero values in Fire(x,y).  Fig. 5 shows the intermediate results by applying the color detection 



 

 

algorithm on two video clips shown in Fig. 2.  It clearly shows that the regions that satisfy both fire flicker 
and fire color properties are located as fire candidate regions. 

 

2.3 Region Merging 
 

We observe that strong fire regions in Fire are generally clustered together.  As a result, we apply a 
series of morphological operations to merge nearby fire regions and eliminate non-fire outliers.  The 
choice of the structuring elements is based on the spatial distance of nearby strong fire regions in a set of 
training images.  Fig. 6(a) shows the results by applying the region merging algorithm on two video clips 
as shown in Fig. 2.  This figure clearly shows that the strong fire regions are merged and other noises 
which lead to the small merged regions are eliminated.  The details of the region merging algorithm are: 

1. Apply the dilation operation with the square structuring element of 7×7 to Fire to enlarge each fire 
region.  Store this dilated result in DilatedFire. 

2. Apply the closing operation with the disk structuring element of 8×8 to DilatedFire to fill in the 
gaps between two enlarged fire regions.  Store this closed result in CandidateFire. 

3. Trace region boundaries in CandidateFire to evaluate the size of each candidate fire region.  
Discard any relatively small candidate fire regions as non-fire outliers.  Store this result in 
CleanCandidateFire. 

4. Apply the erosion operation with the disk structuring element of 2×2 to CleanCandidateFire to 
restore the cleaned candidate fire regions.  Store this result in RestoredCleanCandidateFire. 

 
2.4 Spatial Color Variation 

 
We observe that fire does not remain a steady color and objects with a solid flame-color remain a steady 
color.  This observation is demonstrated in Fig. 7.  Consequently, we propose the spatial color variation 
algorithm to eliminate false-alarms raised by moving objects with a solid flame-color, such as fire colored 
shirts wore by dancing persons in a consistent lighting. 

In order to speed-up the processing time, we exclusively measure the spatial color variations within the 
restored cleaned candidate fire regions in the first, middle, and last frames of a video clip.  The candidate 
fire regions, i.e., RestoredCleanCandidateFire, are estimated by applying the first three algorithms (e.g., 
flicker detection, color detection, and region merging algorithms) on the original video clip.  For each of 
the first, middle, and last frames of a video clip, the details of the spatial color variation algorithm are: 

1. Respectively apply the range filter to each candidate region in RestoredCleanCandidateFire in 
red, green, and blue color components to measure the spatial variations.  This range filter 
computes the spatial change of each candidate fire pixel as the difference between the 
maximum value and the minimum value within its 3×3 neighborhood. 

2. Apply the normalization technique to scale the spatial color changes in red, green, and blue color 
components to [0, 1].  Here, we divide each of the spatial color changes in the three components 
by the maximum spatial color changes in all of the three components. 



 

 

3. Keep the candidate fire pixels in each color component, which show larger spatial changes than 
the average spatial changes of three color components, as potential fire pixels.  Discard the 
remaining candidate fire pixels as non-fire pixels. 

4. Set the potential fire pixels in each color component, which show larger spatial changes than the 
average spatial changes in the green color component, as highly possible fire pixels.  This 
setting is mainly based on the fact that the red component of fire has a limited range of changes 
and the green component of fire has a wide range of changes. 

Let Rfirst(x, y), Gfirst(x, y), and Bfirst(x, y) respectively denote the red, green, and blue color components of 
the first frame of a video clip with the highly possible fire pixels as 1’s and non-fire pixels as 0’s.  Similarly, 
Rmiddle(x, y), Gmiddle(x, y), and Bmiddle(x, y) respectively denote the red, green, and blue color components of 
the middle frame of a video clip with the highly possible fire pixels as 1’s and non-fire pixels as 0’s; Rlast(x, 
y), Glast(x, y), and Blast(x, y) respectively denote the red, green, and blue color components of the last 
frame of a video clip with the highly possible fire pixels as 1’s and non-fire pixels as 0’s.  Apply the 
intersection operation on the highly possible fire regions of three frames in each color component.  That 
is, Rall = Rfirst(x, y) && Rmiddle(x, y) && Rlast(x, y), Gall = Gfirst(x, y) && Gmiddle(x, y) && Glast(x, y), and Ball = 
Bfirst(x, y) && Bmiddle(x, y) && Blast(x, y) where && is the intersection operation.  Apply the union operation, 
Rall ||Ball || Gall, to get the restored clean candidate fire regions with large spatial color variations.  This 
result is passed down to the next stage, temporal color variation, for further processing.  Fig. 6(b) shows 
the results by applying the spatial color variation algorithm on two video clips as shown in Fig. 2.  This 
figure clearly shows that the restored clean candidate fire regions with large spatial color variations are 
located. 

 

2.5 Temporal Color Variation 
 
We propose the temporal color variation algorithm to track the temporal color changes of each pixel in the 
fire candidate regions obtained up to this stage.  The details of the temporal color variation algorithm are: 

1. Compute the number of changes, fireChanges, that occur between fire colored pixels at the same 
location of the most nearby frames in the combined RGB channel. 

2. Compute the number of changes, Changes, that occur between two pixels at the same location 
of adjacent frames in the combined RGB channel. 

3. Use Changes as a stretching factor to multiply with fireChanges to augment the difference of 
temporal color variations.  Store this augmented temporal color variations as 
fireTemporalVariations. 

4. Threshold fireTemporalVariations to keep fire regions with the relatively large temporal color 
variations.  The threshold is set to be the maximum of the value of N/15 and the average of 
fireTemporalVariations, where N is the total number of frames in a video clip. 

Here, the average of fireTemporalVariations represents the overall average of the temporal color changes 
in the entire video.  Since the temporal color changes tend to be larger in a video clip with more frames 
and in a video clip containing fire, we empirically decide the value of N/15 to measure the appropriate 
level of temporal color changes in a video without considering any fire information.  This value is 
proportionally increased with the number of clips in a video.  As a result, the maximum of N/15 and 



 

 

fireTemporalVariations is a better threshold to keep fire regions with the relatively large temporal color 
variations.  Fig. 6(c) shows the results by applying the temporal color variation algorithm on two video 
clips as shown in Fig. 2.  This figure clearly shows that the restored clean candidate fire regions with 
large spatial and temporal color variations are located. 

 
2.6 Final Verdict 
 
The final fire is determined by the ratio of the number of fire candidate pixels obtained up to this stage to 
the number of fire candidate pixels in the strong fire regions obtained by flick and color detection 
algorithms.  If the ratio is larger than a reasonable number decided by the deployed application field of 
the fire detection system, fire is considered present and an alarm is issued.  In the current system, fire is 
considered present as long as there is at least one pixel in the final fire candidate region up to this stage.  
Fig. 6(d) shows the final fire detection results of the two video clips shown in Fig. 2.  Here, we mark the 
detected fire regions by red circles.  These regions satisfy the fire flicker properties, the fire color 
properties, the fire group property, and the fire spatial variation and temporal variation properties. 

 
3 EXPERIMENTAL RESULTS 

 
The proposed method is effective for a large number of conditions and was tested on a large and varied 
database.  Most clips were downloaded from the web (e.g., google video), some clips were provided by 
the Salt Lake City Fire Department, and some clips are taken by the authors.  All of the clips within the 
database have a minimum resolution of 320×240 and the minimum viable frame rate is 25 frames per 
second.  The database consists of 180 videos with a broad range of distinct situations and content.  In 
total, the database has 60 fire videos ranging from campfire and fire in a grill in the day and night to 
burning candles, blue sofa, tan couches, cardboards, and houses at different lighting conditions, etc.  The 
database also has 120 non-fire videos.  Out of these non-fire videos, 60 videos have some characteristics 
that fire normally exhibits.  For example, these non-fire videos range from a fountain with yellow lighting 
and arching water, a running cheetah, a spotted bird walking, dead trees in the wind at sunset, a man 
doing disco in a red shirt in the spotlight, a fire truck with its lights on driving towards the camera, an 
American flag and a firemen flag waving in the wind, several people wearing red or pink dancing the 
flamenco, cars driving on an icy road with their taillights on, a girl spinning on a unicycle with a red tunic, 
to a man talking in front of a black background, etc.  They were deliberately selected to test the 
robustness of our fire detection system in terms of false positives and false negatives.  The remaining 60 
videos out of the non-fire videos do not have any characteristics that fire normally exhibits.   

Table 1 compares the fire detection results by applying our proposed system and the system proposed in 
(Töreyin et al., 2006) on 16 sample videos (eight fire videos and eight non-fire videos) of our database.  It 
clearly shows that our system is more reliable than the other system.  Specifically, our system detects the 
candle (the last video in the fire videos) as fire while the other system fails to detect it as fire.  Our system 
also correctly recognizes three non-fire videos (persons walking on pink floors, a boy dancing with a neon 
orange blanket and red clothing, and fire truck with lights on), which have some of the characteristics of 
fire, as non-fire.  However, the other system is fooled to consider these three videos as having fire inside 



 

 

of them.  Both systems mistakenly consider the last video in the non-fire videos to have fire inside of it.  
This video is of a yellow lit fountain at night with several arches of water and a bit of yellow lit mist.  The 
fountain exhibits all the characteristics of fire and could only be conceivably eliminated through a 
thorough shape analysis. 

Table 2 summarizes the fire detection results by applying our proposed system and the system proposed 
in (Töreyin et al., 2006) on the 180-video database.  It clearly shows that our system is able to correctly 
detect all 60 kinds of fire while the other system fails to detect three kinds of fire.  Among the 60 non-fire 
videos, which have the characteristics of fire, our system can correctly identify 50 videos as non-fires 
while the other system can only correctly identify 30 of them.  Among the remaining 60 non-fire videos, 
which do not have the characteristics of fire, both our system and the other system can correctly identify 
them as non-fire.  Fig. 8 shows a few sample frames in video clips where our system induces false 
positives. 

 

4 CONCLUSIONS 

 
This paper presents a novel system for automatically detecting the presence of fire in color video 
sequences.  The algorithm not only uses the color and movement attributes of fire, but also analyzes the 
temporal variation of fire intensity, the spatial color variation of fire, and the tendency of fire to be grouped 
around a central point.  Our system also uses an enhanced fire color model, which incorporates both the 
pigmentation values of the RGB color and the saturation and the intensity properties in the HSV color 
space, to identify all fire candidate regions in different lighting conditions and environment.  Extensive 
experimental results on 180 videos (60 fire videos and 120 non-fire videos with half of them containing 
fire characteristics) show that our proposed system is consistent and reliable at detecting all forms of fire 
and performs better than the peer system with higher true positives and true negatives and lower false 
positives and false negatives. 

The entire system has been implemented using Matlab 7.6 on a Pentium IV 3.16 Ghz PC running 
Windows XP operating system.  In average, 13.02 seconds are needed to detect fire in a video clip of 
around 100 frames.  This can be easily reduced to at least one-twentieth if the entire system is 
implemented in C language.  We will further improve the run time efficiency in Matlab and convert the 
algorithms in C to make our proposed system practical as a preventative fire detection system.  We will 
also study the shape of fire to further eliminate the false positives. 
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List of figures and tables: 
 
Fig. 1: Block diagram of the proposed fire detection algorithm. 

Fig. 2: Results of the flicker detection algorithm. (a) A typical night fire frame in a video clip of 93 frames 
and the CTD after the flicker detection step.  (b) A typical daytime fire frame in a video clip of 142 frames 
and the CTD after the flicker detection step. 

Fig. 3: Saturation levels and intensity values for two types of fire. (a) Left: Fire at night; Middle: Its 
saturation values in S component of the HSV color space; Right: Its intensity values in V component of 
the HSV color space.  (b) Left: Fire in the day; Middle: Its saturation values in S component of the HSV 
color space; Right: Its intensity values in V component of the HSV color space. 

Fig. 4:  Fire colors in the range of red to yellow. 

Fig. 5: Intermediate results of the color detection algorithm on two video clips (the upper row is for the 
night fire video and the lower row is for the daytime fire video).  (a) Typical fire frames of two video clips.  
(b)The CFC CCN of the video clip obtained after applying the first two steps.  (c) The CTD CTN of the 
video clip obtained after the flicker detection algorithm.  (d) The strong fire regions (marked as white) 
obtained by keeping large pixel values in highly likely fire regions obtained by Equation (10). 

Fig. 6:  Results of the next four algorithms, namely, region merging, spatial color variation, temporal color 
variation, and final verdict (the upper row is for the night fire video and the lower row is for the daytime fire 
video).  (a) The restored clean candidate fire regions, e.g., RestoredCleanCandidateFire, obtained after 
the region merging algorithm.  (b) The restored clean candidate fire regions with large spatial color 
variations, e.g., Rall ||Ball || Gall, obtained after the spatial color variation algorithm.  (c) The restored clean 
candidate fire regions with large spatial and temporal color variations, e.g., thresholded 
fireTemporalVariations, obtained after the temporal color variation algorithm.  (d) Final fire regions 
marked by red circles after the final verdict operation.   

Fig. 7: Spatial variations in fire and a typical fire colored object and their blow-up views. 

Fig. 8: Three sample frames resulting in the false positives.  The red rectangles indicate our misclassified 
fire regions. 
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Table 2: Comparison of the fire detection results of our proposed system and the other system (Töreyin et 
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                                               (b) 
Fig. 2: Results of the flicker detection algorithm. (a) A typical 
night fire frame in a video clip of 93 frames and the CTD after 
the flicker detection step.  (b) A typical daytime fire frame in a 
video clip of 142 frames and the CTD after the flicker detection
step. 

                                        (a) 
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Fig. 1: Block diagram of the proposed fire detection algorithm. 



 

 

 
 
 
 
 

 
 
 
 
 
 

 
 

 

                                       (a) 

                                       (b) 
Fig. 3: Saturation levels and intensity values for two types of fire. (a) Left: Fire at 
night; Middle: Its saturation values in S component of the HSV color space; Right: 
Its intensity values in V component of the HSV color space.  (b) Left: Fire in the 
day; Middle: Its saturation values in S component of the HSV color space; Right: 
Its intensity values in V component of the HSV color space. 

Fig. 4:  Fire colors in the range of red to yellow.



 

 

 
 

 

 

              (a)                                    (b)                                    (c)                                  (d) 
Fig. 6:  Results of the next four algorithms, namely, region merging, spatial color variation, temporal 
color variation, and final verdict (the upper row is for the night fire video and the lower row is for the
daytime fire video).  (a) The restored clean candidate fire regions, e.g., RestoredCleanCandidateFire,
obtained after the region merging algorithm.  (b) The restored clean candidate fire regions with large
spatial color variations, e.g., Rall ||Ball || Gall, obtained after the spatial color variation algorithm.  (c) The 
restored clean candidate fire regions with large spatial and temporal color variations, e.g., thresholded 
fireTemporalVariations, obtained after the temporal color variation algorithm.  (d) Final fire regions 
marked by red circles after the final verdict operation.   

(a)                                       (b)                                     (c)                                      (d) 
Fig. 5: Intermediate results of the color detection algorithm on two video clips (the upper row is for the 
night fire video and the lower row is for the daytime fire video).  (a) Typical fire frames of two video clips. 
(b)The CFC CCN of the video clip obtained after applying the first two steps.  (c) The CTD CTN of the 
video clip obtained after the flicker detection algorithm.  (d) The strong fire regions (marked as white) 
obtained by keeping large pixel values in highly likely fire regions obtained by Equation (10). 



 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Spatial variations in fire and a typical fire 
colored object and their blow-up views. 

Fig. 8: Three sample frames resulting in the false positives.  The
red rectangles indicate our misclassified fire regions. 



 

 

 
 
 
Table 1:  Comparison of the fire detection results of our proposed system and the other system (Töreyin 
et al., 2006) on 16 videos. 

 Number of
Frames 

Frames 
with Fire 

Fire Detected 
(ours, other) Description 

Fire 
Videos 

618 401 (Yes, Yes)  Tan couch on fire in a clear day 
49 49 (Yes, Yes)  People holding candles at night 
98 98 (Yes, Yes)  Fire in a grill in a cloudy day 

108 108 (Yes, Yes)  Cardboard fire at late evening 
93 93 (Yes, Yes)  Campfire at dark night 

142 142 (Yes, Yes)  Armchair burning in a clear day 
104 104 (Yes, Yes)  Three dog houses burning  
98 98 (Yes, No)  Candle with both ends burning that is balanced and teeters 

Non-
Fire 

Videos 

37 0 (No, No)  White birds taking off 
48 0 (No, No)  Street intersection in a raining day 
32 0 (No, No)  American flag waving in the wind in a clear day 
48 0 (No, No)  A swinging light bulb at night 
14 0 (No, Yes)  Fire truck with lights on driving towards the camera 

199 0 (No, Yes)  A mall with people walking on pink floors with light reflection 

34 0 (No, Yes)  A boy dancing in front of a window with a neon orange blanket 
and red clothing. 

41 0 (Yes, Yes)  Yellow lit fountain and arching water at night 
 
 
 
 
 
Table 2: Comparison of the fire detection results of our proposed system and the other system (Töreyin et 
al., 2006) on the entire database (our results, the results of the other system) 
 

 Actual Condition 
Fire Non-Fire 

Test 
Results 

Fire (60, 57) (10, 30) 
Non-Fire (0, 3) (110, 90) 

 


