

Calculus Introduction | Calculus I · Math 1210

Limits

Description

Limits describe how a function behaves near a point, instead of at that point, approached from the left $(x \to a^-)$, right $(x \to a^+)$, or both directions $(x \to a)$.

Continuity:

A function f is continuous at a point a if and only if:

- 1. f(a) is defined
- 2. $\lim_{x \to \infty} f(x)$ exists

3. $\lim_{x \to a} f(x) = f(a)$ $\lim_{x \to a} f(x) \text{ exists if: } \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$

Derivatives

Definition

Derivatives of a function describe the function's instantaneous rate of change and the slope of the tangent line to the function's graph at a particular point.

Limit Definition of a Derivative:

$$\frac{d}{dx}f(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative at a point:

 $\left.\frac{d}{dx}f(x)\right|_{x=a} = f'(x)\bigg|_{x=a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

L'Hopital's Theorem

Indeterminate Forms

L'Hôpital's rule helps us evaluate indeterminate limits of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Other examples of indeterminate forms are when the limit evaluates to $0 \cdot \infty$, 0^0 , or 1^∞ . If L'Hôpital's rule is applied and the result is still indeterminate, repeat the process of L'Hôpital's rule until a definite limit is found.

Theorems

Additive: $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$ $\text{Product: } \lim_{x \to a} [f(x)g(x)] = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$ Quotient: $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ Constant Multiple: $\lim_{x \to a} c[f(x)] = c \cdot \lim_{x \to a} f(x)$ Exponent: $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$ Constant: $\lim_{r \to a} c = c$ Limit of Continuous Functions: For g(x) continuous, $\lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x))$

Theorems

Constant: (af(x))' = af'(x)Additive: (f(x) + g(x))' = f'(x) + g'(x)Product: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)Quotient: $\left(\frac{f(x)}{q(x)}\right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(q(x))^2}$ Chain: $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

L'Hopital's Theorem

If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ and $g(x) \neq 0$, Or, if $\lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} f(x) = \pm \infty, \text{ then}$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Optimization

Overview	First Derivativ	e Test	Second Deriv	vative Test
Use derivative tests	Examine the derivative behavior just around c.		Examine the	second derivative at c.
to determine local extrema. Test at a	• Negative to positive implies a local minimum		• $f''(c) > 0$	implies a local minimum
critical point, <i>c</i> , where	• Positive to negative implies a local maximum		• $f''(c) < 0$	implies a local maximum
f'(x) = 0 or is undefined.	• If both are th negative), the	e same (both positive or both en there is no extremum	• $f''(c) = 0$ from first d	is inconclusive (use results lerivative test instead)
$f''(x) = \int f''(x) dx$		f'(x) = 0 f'(x) > 0 f'(x) > 0	$f'(x) < 0 \qquad f''(x)$	=0 >0 $f'(x) > 0$
f'(x) < 0 f'(x) =	f'(x) > 0	f''(x) = 0		
Local Min	imum	Neither Minimum nor Maximum	Local M	laximum

Calculus I • Math 1210 | Quick Reference | Updated by HA • March 4, 2024 | Page 1 | amlc.usu.edu

Integrals

Definition

Given F'(x) = f(x), Evaluate definite integrals using The Fundamental Theorem of Calculus,

$$\int_{b}^{a} f(x) = F(b) - F(a)$$

Evaluate indefinite integrals as:

 $\int f(x) = F(x) + C$, where C is some constant.

Relationships and Theorems

Concept	Description		
Area	If we approximate the area under $f(x)$ between $x = a$ and $x = b$ by dividing into n rectangles, then the area is approximately equal to $\sum_{i=1}^{n} f(x_i)\Delta x$, where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$. As $n \to \infty$, this approaches $\int_a^b f(x) dx$.		
Mean Value Theorem	Where $f(x)$ is continuous and differentiable on an interval $[a, b]$ there exists some c within $[a, b]$ for which $f'(c) = \frac{f(b)-f(a)}{b-a}$. There exists some point where the instantaneous slope is equal to the average slope from a to b .		
Extreme Value Theorem	If f is a continuous function in a closed interval $[a, b]$ then f achieves both an absolute maximum and minimum in $[a, b]$. Furthermore, the absolute extreme occur at a or b or at a critical number between a and b		
Average Function Value	On interval $[a, b]$, the average value for $f(x)$ is $\frac{1}{b-a} \int_a^b f(x) dx$.		
Arc Length	The length of a curve on some interval $[a, b]$ is $\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$.		
Position, Velocity, and Acceleration	With respect to time, the position, velocity, and acceleration functions can be related to each other using derivatives.		

Position: s(t), Velocity: $v(t) = \frac{d}{dt}(s(t))$, Acceleration: $a(t) = \frac{d}{dt}(v(t)) = \frac{d^2}{dt^2}(s(t))$

Common Derivatives

$\frac{d}{dx}a = 0$	$\frac{d}{dx}\sin(x) = \cos(x)$	$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}x^n = nx^{n-1}$	$\frac{d}{dx}\cos(x) = -\sin(x)$	$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}\tan(x) = \sec^2(x)$	$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}\sec(x)=\sec(x)\tan(x)$	$\frac{d}{dx}\operatorname{arccot}(x) = -\frac{1}{1+x^2}$
$\frac{d}{dx}a^{g(x)} = \ln(a)a^{g(x)}g'(x)$	$\frac{d}{dx}\cot(x) = \csc^2(x)$	$\frac{d}{dx}\operatorname{arcsec}(x) = \frac{1}{ x \sqrt{x^2 - 1}}$
$\frac{d}{dx}\log_b(x) = \frac{1}{\ln(b)} \cdot \frac{1}{x}$	$\frac{d}{dx}\csc(x) = \csc(x)\cot(x)$	$\frac{d}{dx} \operatorname{arccsc}(x) = -\frac{1}{ x \sqrt{x^2 - 1}}$

Common Integrals

$\int x^n dx = \frac{1}{n+1} x^{n+1} + C, (n \neq -1)$	$\int \frac{1}{x} dx = \ln x + C$	$\int \sec^2(x) dx = \tan(x) + C$
$\int k dx = kx + C$	$\int \cos(x) \ dx = \sin(x) + C$	$\int \sec(x)\tan(x) dx = \sec(x) + C$
$\int e^x dx = e^x + C$	$\int \sin(x) dx = -\cos(x) + C$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C$
$\int a^x dx = \frac{1}{\ln(a)}a^x + C$	$\int \tan(x) dx = \ln \sec(x) + C$	$\int \frac{1}{a^2 + x^2} dx = \arctan\left(\frac{x}{a}\right) + C$

Theorems

Additive: $\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$ Constant Multiple: $\int kf(x)dx = k \int f(x)dx$ Substitution: $\int f(g(x))g'(x)dx = \int f(u)du$ where u = g(x)Integration by Parts: $\int udv = uv - \int vdu$