Calculus Introduction \mid Calculus I • Math 1210

Limits

Description

Limits describe how a function behaves near a point, instead of at that point, approached from the left ($x \rightarrow a^{-}$), right $\left(x \rightarrow a^{+}\right)$, or both directions $(x \rightarrow a)$.

Continuity:

A function f is continuous at a point a if and only if:

1. $f(a)$ is defined
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$
$\lim _{x \rightarrow a} f(x)$ exists if: $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$

Theorems

Additive: $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
Product: $\lim _{x \rightarrow a}[f(x) g(x)]=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
Quotient: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
Constant Multiple: $\lim _{x \rightarrow a} c[f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
Exponent: $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
Constant: $\lim _{x \rightarrow a} c=c$
Limit of Continuous Functions: For $g(x)$ continuous, $\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)$

Derivatives

Definition
Derivatives of a function describe the function's instantaneous rate of change and the slope of the tangent line to the function's graph at a particular point.
Limit Definition of a Derivative:
$\frac{d}{d x} f(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Derivative at a point:
$\left.\frac{d}{d x} f(x)\right|_{x=a}=\left.f^{\prime}(x)\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Theorems
Constant: $(a f(x))^{\prime}=a f^{\prime}(x)$
Additive: $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
Product: $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
Quotient: $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
Chain: $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

L'Hopital's Theorem

Indeterminate Forms
L'Hôpital's rule helps us evaluate indeterminate limits of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Other examples of indeterminate forms are when the limit evaluates to $0 \cdot \infty, 0^{0}$, or 1^{∞}. If L'Hôpital's rule is applied and the result is still indeterminate, repeat the process of L'Hôpital's rule until a definite limit is found.

L'Hopital's Theorem

$$
\begin{aligned}
& \text { If } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \text { and } g(x) \neq 0 \text {, Or, if } \\
& \lim _{x \rightarrow a} f(x)= \pm \infty \text { and } \lim _{x \rightarrow a} f(x)= \pm \infty \text {, then } \\
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

Optimization

Integrals

Definition
Given $F^{\prime}(x)=f(x)$, Evaluate definite integrals using The Fundamental Theorem of Calculus,
$\int_{b}^{a} f(x)=F(b)-F(a)$
Evaluate indefinite integrals as:
$\int f(x)=F(x)+C$, where C is some constant.

Relationships and Theorems

Description
If we approximate the area under $f(x)$ between $x=a$ and $x=b$ by dividing into n Area rectangles, then the area is approximately equal to $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$. As $n \rightarrow \infty$, this approaches $\int_{a}^{b} f(x) d x$.
Where $f(x)$ is continuous and differentiable on an interval $[a, b]$ there exists some c
Mean Value Theorem within $[a, b]$ for which $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. There exists some point where the instantaneous slope is equal to the average slope from a to b.

Extreme Value
If f is a continuous function in a closed interval $[a, b]$ then f achieves both an absolute Theorem maximum and minimum in $[a, b]$. Furthermore, the absolute extreme occur at a or b or at a critical number between a and b

Average Function Value On interval $[a, b]$, the average value for $f(x)$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
Arc Length
The length of a curve on some interval $[a, b]$ is $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
With respect to time, the position, velocity, and acceleration functions can be related to each other using derivatives.
Position: $s(t)$, Velocity: $v(t)=\frac{d}{d t}(s(t))$, Acceleration: $a(t)=\frac{d}{d t}(v(t))=\frac{d^{2}}{d t^{2}}(s(t))$

Position, Velocity, and Acceleration

Theorems
Additive: $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$
Constant Multiple: $\int k f(x) d x=k \int f(x) d x$
Substitution: $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$ where $u=g(x)$
Integration by Parts: $\int u d v=u v-\int v d u$

	$x_{i}=a+i \Delta x$. As $n \rightarrow \infty$, this approaches $\int_{a}^{b} f(x) d x$.
Mean Value Theorem	Where $f(x)$ is continuous and differentiable on an interval $[a, b]$ there exists some c within $[a, b]$ for which $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. There exists some point where the instantaneous slope is equal to the average slope from a to b.
Extreme Value	If f is a continuous function in a closed interval $[a, b]$ then f achieves both an absolute maximum and minimum in $[a, b] . ~ F u r t h e r m o r e, ~ t h e ~ a b s o l u t e ~ e x t r e m e ~ o c c u r ~ a t ~$ or b or at a
critical number between a and b	

Common Derivatives

$$
\begin{array}{lll}
\frac{d}{d x} a=0 & \frac{d}{d x} \sin (x)=\cos (x) & \frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} x^{n}=n x^{n-1} & \frac{d}{d x} \cos (x)=-\sin (x) & \frac{d}{d x} \arccos (x)=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} e^{x}=e^{x} & \frac{d}{d x} \tan (x)=\sec ^{2}(x) & \frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x} \ln (x)=\frac{1}{x} & \frac{d}{d x} \sec (x)=\sec (x) \tan (x) & \frac{d}{d x} \operatorname{arccot}(x)=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} a^{g(x)}=\ln (a) a^{g(x)} g^{\prime}(x) & \frac{d}{d x} \cot (x)=\csc ^{2}(x) & \frac{d}{d x} \operatorname{arcsec}(x)=\frac{1}{|x| \sqrt{x^{2}-1}} \\
\frac{d}{d x} \log _{b}(x)=\frac{1}{\ln (b)} \cdot \frac{1}{x} & \frac{d}{d x} \csc (x)=\csc (x) \cot (x) & \frac{d}{d x} \operatorname{arccsc}(x)=-\frac{1}{|x| \sqrt{x^{2}-1}}
\end{array}
$$

Common Integrals

$$
\left.\begin{array}{lll}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C,(n \neq-1) & \int \frac{1}{x} d x=\ln |x|+C & \\
\int k d x=k x+C & \int \sec (x) d x=\sin (x)+C & \\
\int e^{x} d x=e^{x}+C & \int \sec (x) \tan (x) d x=-\cos (x)+C & \\
\int a^{x} d x=\frac{1}{\ln (a)} a^{x}+C & \int \tan (x) d x=\ln |x \sec (x)|+C & \\
\sqrt{a^{2}-x^{2}} d x=\sec (x)+C \\
\int \frac{1}{a^{2}+x^{2}} d x=\arctan \left(\frac{x}{a}\right)+C \\
a
\end{array}\right)+C
$$

