

Series Test for Convergence, Divergence | Calculus II \cdot Math 1220

Divergence Test		
How to Use	Conclusions	Notes
Use divergence test if $\lim_{n \to \infty} a_n \neq 0$	If $\lim_{n \to \infty} a_n \neq 0$ or DNE series diverges. If $\lim_{n \to \infty} a_n = 0$ test inconclusive.	• This test does not show convergence and can be used with alternating series
Geometric Series	Test	
How to Use	Conclusions	Notes
Geometric series have form $\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^n$	Converges to $\frac{a}{1-r}$ if $ r < 1$ Diverges if $ r \ge 1$	 Useful if n is only in the exponent. Simplification may be needed This is the ONLY test that tells us what a series converges to.
P-Series Test		
When to Use	Conclusions	Notes
P-series are in the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$	If $p > 1$ the series converges If $p \le 1$ the series diverges	• Useful for comparison tests
Integral Test		
When to Use	Conclusions	Notes
Suppose $f(x)$ is: \Box continuous on $[k, \infty)$ \Box positive on $[k, \infty)$ \Box Ultimately decreasing $\Box a_n = f(n)$	If $\int_k^{\infty} a_n$ converges, series converges. If $\int_k^{\infty} a_n$ diverges, series diverges.	 This test is never inconclusive. The value of the integral is NOT the value of the series!

Alternating Series Test

When to Use	Conclusions	Notes
$\Box \text{ In form } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$ $\Box a_n \text{ is always positive}$ $\Box \text{ Ultimately decreasing,}$ $a_n \ge a_{n+1} \text{ for all } n > N$ $\Box \lim_{n \to \infty} a_n = 0$	Test inconclusive without all conditions met. BUT if all met, series converges.	 ∑ a_n converges absolutely if ∑ a_n converges. If ∑ a_n converges and ∑ a_n diverges, ∑ a_n converges conditionally.

Comparison Test

When to Use	Conclusions	Notes
Let $\sum a_n$ and $\sum b_n$ be series with positive terms. Use when a series has a similar form to a p-series or a geometric series	If $\sum a_n \leq \sum b_n$ for all <i>n</i> sufficiently large and $\sum b_n$ converges, then $\sum a_n$ converges. If $\sum a_n \geq \sum b_n$ for all <i>n</i> sufficiently large and $\sum b_n$ diverges, then $\sum a_n$ diverges	 Use to compare a complicated series with a less-complicated series that grows at the same rate. Need to come up with b_n

Limit Comparison Test

When to Use	Conditions	Conclusions
Use to show that the series $\sum a_n$ and $\sum b_n$ are growing at the same rate.	series with positive terms.	• If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where $c > 0$, both diverge or converge. • If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, $\sum a_n$ converges. • If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, $\sum a_n$ diverges.

Ratio Test

When to Use	How to Use	Conclusions
Use when we have n 's in the exponents and connected to constants. This is also useful for factorials $(n!)$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$	 If L < 1, then ∑ a_n converges absolutely. If L > 1, then ∑ a_n diverges. If L = 1, then the test is inconclusive.

Root Test

When to Use	How to Use	Conclusions
Useful if the series has a power of n . This test is not commonly used.	$\lim_{n \to \infty} \sqrt[n]{ a_n } = L$	 If L < 1, then ∑ a_n converges absolutely. If L > 1, then ∑ a_n diverges. If L = 1, then the test is inconclusive.

Remainder Estimate Inequalities

Alternating Series Remainder

$$R_n = \left| \sum_{n=1}^{\infty} (-1)^{n+1} a_n - \sum_{n=1}^{N} (-1)^{n+1} a_n \right| \le a_{N+1}$$
Integral Remainder

$$\int_{n+1}^{\infty} f(x) dx < R_n < \int_n^{\infty} f(x) dx$$

(from Alternating Series Remainder) $\begin{aligned} |R_n| &\leq a_{n+1} \\ \text{Taylor's Theorem with Remainder} \\ |R_n| &\leq \frac{M}{(n+1)!} |x-c|^{n+1} \end{aligned}$

Taylor Series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

Common Maclaurin Series:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 \dots = \sum_{n=0}^{\infty} x^n$$
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$$