

and

RStudio
Help Book

Todd Partridge • Kady Schneiter, Ph.D.
 Spring 2023

R and RStudio Help Book • Page 1

TABLE OF CONTENTS

Downloading R, and RStudio ..
 To Download and Install R ..
 To Download and Install RStudio ..
Basic Arithmetic ..
Variables ..
 Creating Variables ..
 Naming Variables ...
 Using Variables ..
 Altering Variables ..
 Deleting Variables ..
Vectors and Matrices ...
 Creating Vectors ...
 Creating Matrices ...
 Searching Vectors and Matrices ...
 Editing Vectors and Matrices ...
 Sorting Vectors and Matrices ...
Basic Functions ..
 Arithmetic Functions ..
 Probability Distribution Functions ...
 Creating Functions ...
Datasets ..
 Dataset Variable Names ...
Numerical Data Summary ..
Graphical Data Summary ...
 Numerical Data ..
 Boxplots ..
 Histograms ..
 Scatterplots ...
 Categorical Data ...
 Bar Charts ...
 Pie Charts ..
 Numerical and Categorical Data ..
 Boxplots ..
Inference ..
 One-Sample t-Tests ..
 Two-Sample t-Tests ...
 Regression ..
 Chi-Square Tests ..
 Goodness of Fit ...
 Test of Independence ..
 ANOVA ...
Reading in Data Files ...
Help in R ..
 Function-Specific Help ..
 General Procedural Help ..

2
2
2
2
4
4
5
5
5
5
6
6
7
7
8
9
10
10
11
12
13
13
15
15
15
15
17
18
19
19
21
22
22
22
22
23
24
25
25
26
26
27
28
28
29

R and RStudio Help Book • Page 2

DOWNLOADING R AND RSTUDIO

To download and install R:

- Open your web browser.
- Go to https://www.r-project.org.
- Under “Getting Started”, click the link that says “download R”.
- From the list of mirrors, scroll down to USA, and click on the first link.
- Choose the link for your corresponding computer operating system.

o If you clicked Windows, click the link labeled “install R for the first time”, then
click the top link on the page.

o If you clicked Mac, click on the first link found under “Latest release:”.
- Once the file is downloaded, open the file, and go through the installation instructions.

This booklet was written under the premise that users are also using RStudio, which is a
platform that makes using R more straightforward for new users.

To download and install RStudio:

- Open your web browser.
- Go to https://www.rstudio.com/products/rstudio/download.
- Click on the “Download” button found under “RStudio Desktop”.
- Under “Installers for Supported Platforms”, choose the link for your corresponding

computer operating system.
- Once the file is downloaded, open the file, and go through the installation instructions.

Now that you have R and RStudio downloaded on your computer, any time you wish to use
R, just click on the RStudio program, and it will open R for you in the more straightforward
platform.

BASIC ARITHMETIC
Here is a basic list of arithmetical operations that can be used in R:

“ + ” is used for addition.

“ - ” is used for subtraction.

“ * ” is used for multiplication.

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download

R and RStudio Help Book • Page 3

“ / ” is used for division.

“ ^ ” creates exponents.

“ () ” are used in the normal fashion. HOWEVER, parentheses are not used as a multiplication
sign. If characters are found directly before an open parenthesis, R interprets those
characters as the name of a function.

“ sqrt() ” is used to find the square root of a number. For other custom roots, write it out like an
exponent.

“ pi ” can be used to call the value of the irrational number π.

“ exp() ” is used to exponentiate numbers. It raises the irrational number e to whatever is found
in the parentheses.

“ log() ” is used to take the natural log of numbers. So, this is, in fact, the ln, and not log10. For
base 2 or base 10, you can use “ log2() ” or “ log10() ” respectively. For other bases,
you will input “ log(x, base=y) ”, where x is the value and y is the new base.

R and RStudio Help Book • Page 4

“ sin() ”, “ cos() ”, and “ tan() ” are the sine, cosine, and tangent functions, respectively.
Angles input are to be in radians, not degrees.

“ asin() ”, “ acos() ”, and “ atan() ” are the arcsine, arccosine, and arctangent, respectively.
Angles output are in radians, not degrees.

VARIABLES
Creating Variables

You can create variables to hold all sorts of values, characters, lists, matrices, functions, or
even entire data sets. There are other sections in this booklet that go into these in more
depth. Here, we will discuss basic creation.

“ = ” or “ <- ” are used as assignment operators in R. “ <- ” is more common, as it avoids
confusion with how “ = ” is often perceived in other circles. The assignment operator assigns
the value on the right of the operator to the variable on the left of the operator. For instance,
“ x = 1 ” assigns the value 1 to the variable x.

When you create a variable, the console will not return anything, even if it worked:

However, you will see in the top right section of RStudio that a variable has appeared:

This shows that there is a variable x with value 1.

R and RStudio Help Book • Page 5

Naming Variables

Variables can have just about any name you can think of, as long as they follow these few
rules:

1. The variable name is any combination of letters, digits, periods, and underscores.
2. The variable name begins with a letter or a period.
3. If the variable name begins with a period, it cannot be followed by a digit.
4. The variable name is not already being used by R for something else. (In many cases,

this rule can be broken, but can confuse your code later.)

Using Variables

Once you’ve created a variable, using it is as simple as typing the name of the variable. That
variable name now calls forth whatever information you put into it. For instance, with our
“x=1” example, we see the following:

Altering Variables

A variable’s value can be changed at any time (this includes many pre-programmed
variables, such as “pi”, so be careful) using the same assignment operators used for creating
variables. Remember, the assignment operator does not denote equality. Thus, we can write
something like “x=x+1”, which might not make sense mathematically, but in R, it simply
assigns “x” a value that is 1 greater than whatever it was previously:

Deleting Variables

If you want to delete a variable, simply use the “ rm() ” function.

R and RStudio Help Book • Page 6

VECTORS AND MATRICES
Vectors and matrices are objects that hold more than one piece of information. These can be
saved as variables with some dynamic properties.

Creating Vectors

Vectors are also often referred to as “lists.” The simplest way to create a vector is to use the
concatenate function “ c() ”.

The variable “vector1” now represents a vector of five numbers, 1 through 5. A simpler way
to evoke a list of consecutive numbers is with a colon:

The sequence function “ seq() ” can also be useful to create a more specific sequence of
numbers. For instance, you can define where to begin, where to end, and how large the steps
should be:

You can also use “ seq() ” to define where to begin, where to end, and how many steps you
want to take to get there:

In any case, you would now see these vectors listed in the top right window of the RStudio
application like so:

As you can see, all four vectors are one-by-five tables of numbers, 1 through 5. The only
difference between them is that vector1, vector3, and vector4 are vectors of numbers, and
vector2 is a vector of integers. The reason for this is because when we used the colon
feature, R recognized that everything coming into the vector was going to have an integer
value. However, the other vectors simply received different values that were fed individually
into the vector, so R made no such assumption about those values.

R and RStudio Help Book • Page 7

Creating Matrices

A basic matrix is fundamentally a “list of lists” in R. We can create a basic matrix by
creating several lists and binding them together. We can use the row-bind function “ rbind()
” or the column-bind function “ cbind() ” to do this:

As you can see, the row-bind function took each list and made it a row in the matrix. The
column-bind function took each list and made it a column in the matrix. We can also do this
with vectors we’ve saved as variables:

In this case, since each column already had a name when input, the matrix shows those
names in the output.

Searching Vectors and Matrices

The most straightforward way to look at different parts of a vector or matrix are with square
brackets. Typing the name of a vector or matrix followed by square brackets lets R know
that you are looking at a particular place in the list. For instance, typing “ vector1[2] ” will
show whatever is the second item in vector1.

You can use a colon to look at several consecutive items:

R and RStudio Help Book • Page 8

In a matrix, you need to define both the row and the column you wish to look at. For
instance, in this matrix,

R should return “ 8 ” if we look at the 2nd row, 3rd column.

If you leave the row or column space empty, it will return all rows or all columns,
respectively. So, matrix2[,2] should show all the rows, but only column 2:

We can also use the “ which() ” function to search out rows or columns that fit certain
criteria. For instance, if you wanted to see every row in matrix2 where the first number was
greater than 1, you would put “ which(matrix2[,1]>1) ” in the row space (thus picking out
every row in which the first column is a number greater than 1), and leave the column space
blank (thus showing every column in that row, ultimately displaying entire rows that fit the
criteria):

You can use the following comparison operators in the “ which() ” function:

- “ x > y ” x is greater than y.
- “ x < y ” x is less than y.
- “ x >= y ” x is greater than or equal to y.
- “ x <= y ” x is less than or equal to y.
- “ x == y ” x is equal to y.
- “ x != y ” x is not equal to y.

Editing Vectors and Matrices

Each individual value in a vector or matrix can be edited as if it were its own variable. For
instance, consider matrix33, a 3x3 matrix with a “3” in each cell:

R and RStudio Help Book • Page 9

If you wanted to change the middle cell of this matrix to a 9, you would simply input the
following:

You can edit an entire list of numbers simultaneously through basic arithmetic operations:

You can even use the which function as shown in the previous section to edit entries that fit
certain criteria. For instance, we can change any value in vector1 which is less than 3 to a 0
instead:

Sorting Vectors and Matrices

To sort elements in a vector, use the “ sort() ” function. This works on numeric variables,

as well as character variables:

R and RStudio Help Book • Page 10

To sort elements in a matrix, use the “ order() ” function. As an example, if you wanted to
sort the rows of a matrix by the values in the first column, you would input
“matrixName[order(matrixName[,1]),]”:

BASIC FUNCTIONS
Arithmetic Functions

Many of the functions discussed previously can be applied to vectors and matrices as well as
single numbers. These include “ sqrt() ”, “ log() ”, “ exp() ”, and the trigonometric
functions. For example:

There are many other functions that will arithmetically manipulate values as well. A few are:

 “ abs(x) ” Absolute value of x.
 “ ceiling(x) ” The integer found just after a decimal number x.
 “ floor(x) ” The integer found just before a decimal number x.
 “ round(x, digits=n) ” Rounds x to n digits after the decimal.
 “ signif(x, digits=n) “ Keeps n significant digits of x.

R and RStudio Help Book • Page 11

For example:

There are also many functions that will perform arithmetic operations on a list of values and
return one result value. Two of the most common are “ sum() ” and “ mean() ”:

You can also nest functions within other functions with relative ease:

R and RStudio Help Book • Page 12

Probability Distribution Functions

There are many functions available in R that compute probabilities based on distributions.

Discrete Distribution Functions

Distribution Function What It Does
Binomial

Distribution
dbinom(x,n,p) For X~binomial(n,p), this returns P(X = x).
pbinom(x,n,p) For X~binomial(n,p), this returns P(X ≤ x).

*Geometric
Distribution

dgeom(x,p) For X~geometric(p), this returns P(X= x).
pgeom(x,p) For X~geometric(p), this function returns P(X ≤ x).

Poisson
Distribution

dpois(x,μ) For X~Poisson(μ), this returns P(X = x).
ppois(x,μ) For X~Poisson(μ), this returns P(X ≤ x).

*There are two common ways to define a geometric random variable:

1. A random variable that counts the number of independent, Bernoulli (success/failure) trials up
to and including the first success. (Call this geometric1(p)).

2. A random variable that counts the number of independent, Bernoulli (success/failure) trials up
to but not including the first success (i.e. the number of failures before the first success). (Call
this geometric2(p)).

The dgeom and pgeom function return probabilities for the geometric2(p) distribution. If there
are X trials up to and including the first success, there are X-1 failures. If Y~geometric1(p), P(Y
= x) = dgeom(x-1, p) and P(Y ≤ x) = pgeom(x-1, p).

Continuous Distribution Function

Distribution Function What It Does

Chi-Square
Distribution

pchisq(x,n) For X~chisquare(n), returns P(X ≤ x).

qchisq(q,n) Returns qth quantile of the chi-square statistic with n degrees of
freedom.

F
Distribution

pf(x,n,m) For X~ Fn,m returns P(X ≤ x).
qf(q,n,m) Returns qth quantile of the Fn,m distribution.

Normal
Distribution

pnorm(x,μ,σ) For X~N(μ, σ2) returns P(X ≤ x).
qnorm(q,μ,σ) Returns the qth percentile of the N(μ, σ2) distribution.

t
Distribution

pt(x,n) For X~tn, returns P(X ≤ x).

qt(q,n) Returns qth quantile of the tn distribution.

R and RStudio Help Book • Page 13

Creating Functions

You may want to create your own function to quickly perform actions you will be having R
do regularly. You can use the “ function() { } ” function to create a function. In the
parentheses, you will input names for variables the user will need to use when they call the
function. In the curly brackets, you will input the code you want the function to perform. In
the code within the curly brackets, if you want the function to return a value, you must have
the last line before the end curly bracket be “ return() ” with whatever you want returned in
the parentheses.

For example, perhaps you will be changing a lot of temperatures from Fahrenheit to Celsius.
You can create a function that does this with the following:

Note: When inputting code to R, you can create new lines without having R evaluate the
code by pressing Shift+Enter.

Note: R will automatically create a new line (denoted with a “ + ” symbol) if the current
line is clearly not complete when you press Enter. This will often happen if you miss an
end-parenthesis, an end-bracket, etc.

Now, with our new “ FtoC() ” function, you can easily convert temperatures from Fahrenheit
to Celsius:

As another example, suppose you wanted to create a function that calculated the nth root of
any number. You could do the following:

Now, to find the 4th root of 16, you can use your newly created function:

DATASETS
Datasets have very similar qualities to matrices, with some extra properties. R has many data
sets built in when you download the program. We will use the “ iris ” dataset to explore
those extra properties.

R and RStudio Help Book • Page 14

Dataset Variable Names

The columns of a dataset often will have names for easier referencing. Use the “ names() ”
function to show the names of a dataset:

While the columns of a dataset can be called in the way you would call the column of a matrix, it
can also be called via the “ $ ” operator followed by the variable name:

So, if you wanted to see the information on all the irises with a sepal width of 3.0 or greater,
you could use the “ which() ” function in the following manner:

You can use the “ attach() ” function to save all the variable names in a data set as vector
names. If you did this with the iris dataset, you could then refer to sepal widths by simply
typing the name “ Sepal.Width ” rather than typing out “ iris$Sepal.Width ”. This can save a
lot of time in the long run if you will be referring to different parts of the data set often:

R and RStudio Help Book • Page 15

NUMERICAL DATA SUMMARY
The most basic numerical summaries often used in R are finding the mean, median, standard
deviation, or variance of a certain list of numbers, or two find the correlation between two
lists of numbers. For our examples, we will use the “ iris ” dataset as we have before:

You can also use the “ summary() ” function for the “five-number summary” of a list of
numbers, as well as the mean, all at once:

However, if you use the “ summary() ” function on a qualitative/categorical variable, it will
return a list of the categories, and how many of each category there are:

GRAPHICAL DATA SUMMARY
There is no limit to the ways you can summarize data graphically, and R can make it happen
with relative ease. This guide will go over very basic visualizations that can organize data in
a meaningful way. For our examples, we will use the “ iris ” dataset as we have before.

Numerical Data

Boxplots

R and RStudio Help Book • Page 16

Feeding a list of numbers into the “ boxplot() ” function will create a boxplot by graphically
displaying the five-number summary of the data, along with any lower or upper outliers, if
applicable.

Additional Variables Used in “ boxplot() ”:

- notch Creates a notch at the median if set to “ TRUE ”.
- varwidth Sets width of boxplot proportional to sample size if set to “ TRUE ”.
- names Using “ c() ”, create a list of names for each boxplot in the graphic.
- main The name of the overall graphic.
- xlab The name of the x axis.
- ylab The name of the y axis.
- col Using “ c() ”, create the list of colors to be used for the boxplots.

R and RStudio Help Book • Page 17

Histograms

With the “ hist() ” function, you can create a histogram from a list of numbers.

Additional Variables Used in “ hist() ”:

- breaks A number can be used here to specify the number of desired bars.

R and RStudio Help Book • Page 18

- xlim Using “ c() ”, insert the first and last value for the x axis.
- ylim Using “ c() ”, insert the first and last value for the y axis.
- main The name of the overall graphic.
- xlab The name of the x axis.
- ylab The name of the y axis.
- col Using “ c() ”, create a sequence of colors to be used for the bars.

Scatterplots

Inputting two lists of numbers (of the same length) into “ plot() ” will create a scatterplot of
ordered pairs created as the program moves down both lists together.

Additional Variables Used in “ plot() ”:

- axes This will remove the axes if set to “ FALSE ”.
- xlim Using “ c() ”, insert the first and last value for the x axis.
- ylim Using “ c() ”, insert the first and last value for the y axis.

R and RStudio Help Book • Page 19

- main The name of the overall graphic.
- xlab The name of the x axis.
- ylab The name of the y axis.
- col Input a color for the points on the graph to be colored.

You can also create a scatterplot matrix using the “ pairs() ” function. First, enter the
regression formula being used with the tilda “ ~ ” operation. Then, input the name of the
dataset where the variables can be found:

Categorical Data

Bar Charts

R and RStudio Help Book • Page 20

Bar charts are perhaps the simplest and most effective way to depict how many subjects
belong to each of several classifications. The “ barplot() ” function does not just take a list
of category names, however. This function needs a concise summary of the categories and
how many subjects are within each, which can be accomplished with the “ summary() ”
function:

Additional Variables Used in “ barplot() ”:

- names Using “ c() ”, create a list of names for each bar in the graphic.
- main The name of the overall graphic.
- xlab The name of the x axis.
- ylab The name of the y axis.
- col Using “ c() ”, create a sequence of colors to be used for the bars.

R and RStudio Help Book • Page 21

Note: If you have categorical data that has been recorded numerically (for instance,
“yes” and “no” recorded as “1” and “0”, you will need to let R know to treat the
numbers as category names rather than numerical data. You can do this with the “
as.factor() ” function, which will tell R to treat the numbers like factors, or categories.
So, if there was a variable in the “ iris ” dataset called “ fullBloom ” with 0s and 1s, you
could create a bar chart of the data by simply typing “
barplot(summary(as.factor(iris$fullBloom))) ”.

Pie Charts

The “ pie() ” function also uses summarized data of a categorical variable, as follows:

Additional Variables Used in “ pie() ”:

- radius Input a number between -1 and 1 to change the size of the chart’s radius.
- clockwise If set to “ TRUE ”, the categories will be listed clockwise on the chart.
- labels Using “ c() ”, create a list of names for each slice of the pie chart graphic.
- main The name of the overall graphic.
- col Using “ c() ”, create a sequence of colors to be used for the slices.

R and RStudio Help Book • Page 22

Numerical and Categorical Data

Boxplots

Of the simple graphs shown above, boxplots are the most effective way to compare
numerical data across different categories. For instance, with the “ iris ” dataset, it can be
enlightening to create a boxplot for the sepal widths of each kind of iris, and look at them
side by side. You can do this by using the “ ~ ” operation, where “ x~y ” essentially tells R
to look at variable x, but separated into groups according to the y variable.

R and RStudio Help Book • Page 23

INFERENCE
R has many impressive capabilities when it comes to performing statistical inference on
datasets. This booklet will go over a couple of the most basic types of inference.

One-Sample t-Tests

To perform a one-sample t-test, you simply input a set of numbers into the “ t.test() ”
function. This function will perform a hypothesis test, as well as create a confidence interval,
for the population average. The defaults for this function are a two-sided test, with a null
hypothesis of μ=0, and a confidence level of 0.95.

Additional Variables Used in “ t.test() ”:

- mu This is the population average, according to the null hypothesis.
- alternative The alternative hypothesis. Can be “ two.sided ”, “ greater ”, or “ less ”.
- conf.level A number between 0 and 1 to indicate the confidence level.

Two-Sample t-Tests

Two-sample t-tests are conducted with the “ t.test() ” function as well, but with two lists of
numbers entered instead of one. The defaults for this function are independent samples with
assumed different population variances, with the null hypothesis being that there is no
difference between the two population means.

R and RStudio Help Book • Page 24

Additional Variables Used in “ t.test() ”:

- paired Set this variable to “ TRUE ” to conduct a paired-sample t-test.
- var.equal Set this variable to “ TRUE ” to use the pooled-variance procedure.

Regression

To calculate the regression line for two possibly correlated variables, use the “ lm() ”
function (which stands for “linear model”). As it is customary to regress y on x (defining y
as the dependent variable and x as the explanatory variable), equations are input into the “
lm() ” function in the form “ lm(y~x) ”. This function will return the intercept and the slope
for the line of best fit.

R and RStudio Help Book • Page 25

For more detailed information on the linear model, you can use the “ summary() ” function
on the linear model function to get p-values for each of these values (with the null hypothesis
being that the slope and the intercept are 0).

Chi-Square Tests

The “ chisq.test() ” function can perform both the Goodness of Fit Test and the Test of
Independence. The function differentiates between the two tests depending on whether it
receives a simple list of numbers, or a matrix.

Goodness of Fit

Suppose there is a luxury cruise ship with 424 passengers: 178 men, 155 women, and 91
children. You can put this list of numbers into the “ chisq.test() ” function to perform a
Goodness of Fit test.

The default for the Goodness of Fit Test for the null hypothesis is that all counts should be
equal. However, you can change the variable “ p ” in the function to define a different set of
proportions as the null hypothesis distribution.

R and RStudio Help Book • Page 26

Test of Independence

Suppose there is a small family cruise ship with 271 passengers: 88 men, 89 women, and 94
children. You can put a matrix containing the types of passengers, found on this boat
alongside the types of passengers in the previous example, into the “ chisq.test() ” function
to perform a Test of Independence of whether, among these two ships, the type of ship is
independent from the distribution of passenger types.

ANOVA

To perform a basic one-way ANOVA test in R, use the “ aov() ” function. This function
needs a list of numbers, as well as a categorical variable to separate them by, as you would
use the “ ~ ” operator to create side-by-side boxplots.

For more detailed information on the ANOVA test, you can use the “ summary() ” function
on the “ aov() ” function to get a p-value for the corresponding F test.

R and RStudio Help Book • Page 27

If you’ve determined you have significant results from your ANOVA test, you can conduct
pairwise comparisons by using the “ TukeyHSD() ” function rather than “ summary() ”:

READING IN DATA FILES
In order to summarize or analyze data, you need to read it into the R program. There are
many ways to do this, but perhaps the simplest are the “ read.table() ” and “ read.csv() ”.
These functions have equal purposes, though “ read.table() ” is for .txt files, and “ read.csv()
” is for .csv files.

However, before you can use these functions, you will need to set you working directory to
the folder on your computer where the data file can be found. Go to “Session”, “Set
Working Directory”, then “Choose Directory…”.

When the file explorer has opened, find the folder containing the .txt or .csv file you want to
read into R. When the folder has been selected, click “Open”.

R and RStudio Help Book • Page 28

Now that the working directory has been set, R will reference this folder when you use either
the “ read.table() ” or “ read.csv() ” function.

These functions require you to input the file name, followed by a “ TRUE ” or “ FALSE ”
statement for the variable “ header ”. The “ header ” variable indicates whether or not the
first line in the data matrix is a list of variable names or not.

The following are examples of what using these functions might look like:

HELP IN R
As has been stated, R has many more capabilities than can be explained in this short tutorial.
While there are many very helpful places online to find help in coding for R, the R program
has a help feature embedded in the software as well.

Function-Specific Help

Use the “ ? ” operator followed by the name of a function to return the help page on that
function:

R and RStudio Help Book • Page 29

General Procedural Help

You can also click “ Help ” at the top of the RStudio window for more general help.

This will bring up the following window:

There is a lot of useful information here. However, if you need a quick search for how to
accomplish a certain task, you can click on “ Search Engine & Keywords ” and then search

R and RStudio Help Book • Page 30

for what you are looking for. Also, online sources can also be a great, straightforward help
for accomplishing new tasks in R.

R and RStudio Help Book • Page 31

REFERENCES: The following are additional references and sources for R Studio

Articles and Books

Adler, J. (2012). R in a Nutshell: A Desktop Quick Reference. (2nd edition). O'Reilly Media.

Matloff, N. (2013). The art of R programming: a tour of statistical software design. San
Francisco: No Starch Press.

Vries, A. de., & Meys, J. (2015). R For Dummies, 2nd Edition. John Wiley & Sons.

Wickham, H., & Grolemund, G. (2017). R for data science. Beijing: OReilly.

Websites

Modern Dive Website - https://moderndive.netlify.com/1-getting-started.html

R Studios Tutorial - http://web.cs.ucla.edu/~gulzar/rstudio/basic-tutorial.html

R Tutorials Blogsite - https://data-flair.training/blogs/rstudio-tutorial/

