aftyNFM: R implementation of a probe-level nested
factorial model for Affymetrix data
John R. Stevens*

June 10, 2010

* Assistant Professor of Statistics, Department of Mathematics and Statistics, and Center
for Integrated Biosystems, Utah State University
(http://www.stat.usu.edu/"~ jrstevens)

1 Introduction

The affyNFM R code provides tools to fit a probe-level nested factorial model for small-
sample Affymetrix data. This model is presented and evaluated in the Stevens et al. (2010)
manuscript “A Comparison of Probe-Level and Probeset Models for Small-Sample Gene
Expression Data.”. This tutorial vignette provides a guide for the use of these tools.

Note: If you use the affy NFM R code please cite Stevens et al. (2010).

2 Sample data

For purposes of illustration in this tutorial, we use the spikein95 data provided with the
SpikelnSubset R package:

> library(SpikeInSubset)
> data(spikein95)

In this AffyBatch object there are six arrays, with 16 (of 12,626) probesets spiked-in.
The names of these probesets and the relative spike-in concentrations can be seen:

> pData(spikein95)

37777_at 684_at 1597_at 38734_at 39058_at 36311_at 36889_at

1521a99hpp_av06 0.00 0.25 0.5 1 2 4 8

1532a99hpp_av04 0.00 0.25 0.5 1 2 4 8

2353a99hpp_av08 0.00 0.25 0.5 1 2 4 8

1521b99hpp_av06 0.25 0.50 1.0 2 4 8 16

1532b99hpp_av04 0.25 0.50 1.0 2 4 8 16

2353b99hpp_av08r 0.25 0.50 1.0 2 4 8 16
1024_at 36202_at 36085_at 40322_at 407_at 1091_at 1708_at

1521a99hpp_av06 16 32 64 128 0.00 512 1024

1532a99hpp_av04 16 32 64 128 0.00 512 1024

2353299hpp_av08 16 32 64 128 0.00 512 1024

1521b99hpp_av06 32 64 128 256 0.25 1024 0

1532b99hpp_av04 32 64 128 256 0.25 1024 0

2353b99hpp_av08r 32 64 128 256 0.25 1024 0
33818_at 546_at

1521a99hpp_av06 256 32

1532a99hpp_av04 256 32

2353299hpp_av08 256 32

1521b99hpp_av06 512 64

1532b99hpp_av04 512 64

2353b99hpp_av08r 512 64

3 Sample affyNFM call

In this section we will use the sample data and apply the nested factorial model (NFM)
to identify genes (or probesets) that are differentially expressed between the control and
treatment conditions.

3.1 Create necessary objects

First load necessary libraries:

> library(affy)
> library(nlme)
> library(perm)

Next create the AffyBatch object, which we will call use.abatch. In practice this would
most likely be accomplished using the ReadAffy function, but here (for the purposes of
reproducible demonstration) we load an existing AffyBatch object.

> library(SpikeInSubset)
> data(spikein95)
> use.abatch <- spikein95

Next define control (use.tl) and treatment (use.t2) array indices. In our example,
arrays 1, 2, and 3 are control, and arrays 4, 5, and 6 are treatment:

> use.tl <- c(1, 2, 3)
> use.t2 <- c(4, 5, 6)

To save time (in this demonstration), we define a subset of genes to use by creating a
vector (use.gn) of geneNames. We randomly select 100 gene names and add the 16 known
spike-in genes. This subset of genes will be tested for differential expression. In practice,
the subset may be identified using non-specific filtering (Hackstadt and Hess 2009).

> gn.spike <- colnames(pData(use.abatch))

> set.seed(1234)

> gn.others <- sample(geneNames (use.abatch), 100)
> use.gn <- c(gn.spike, gn.others)

The affyNFM tools involve computationally expensive iterative procedures, so it may
be desirable to save the NFM results. We define a local directory (use.wd) to save these
results. In practice, this would be a directory easily accessible to the user.

> use.wd <- "C:/folder"

We define a filename base (use.filename) to save the NFM results in the specified
directory. Note that we do not include a file extenstion, as the “.csv” extension will be
added automatically by the affyNFM function.

> use.filename <- '"sample.results"
With the necessary objects now defined, we source in the affyNFM code:
> source("http://www.stat.usu.edu/"jrstevens/affyNFM.R")

This affyNFM code defines several functions, with two main functions of interest:
affyNFM calculates the NFM F-statistics and nfm.pvals calculates the NFM permuta-
tion p-values.

3.2 F-statistic calculation

The main affyNFM function calculates the NFM F-statistic for each probeset, after RMA
background correction and quantile normalization. To facilitate subsequent p-value calcu-
lation, the F-statistics are calculated for all possible (and non-redundant) permutations of
treatment labels.

The arguments to this affyNFM function are as follows:

1. abatch — the (raw) AffyBatch object to be analyzed
2. t1 — the array indices of the control samples
3. t2 — the array indices of the treatment samples

4. gn — (optional) the subset of geneNames to be tested for differential expression using
the NFM. If not provided, the full set of geneNames represented on the abatch object
is used.

5. wd — (optional) the working directory specifying where to save the results of the NFM.
If not provided (but filename is provided), the current working directory (getwd())
is used.

6. filename — (optional) The filename base of the results to be saved. If provided, the
affyNFM function will create a filename.csv file in the wd directory. If not provided,
the affyNFM function will return a data.frame object.

7. progress — (optional) A filename base where a progress report will be saved. If not
specified (but filename is specified), then the filename base will be progress_filename.
A “.csv” file will be created in the wd directory. This may be useful to monitor run-
time.

8. verbose — (optional) A TRUE/FALSE logical indicating whether or not to send
detailed progress to output. This is different from the file output controlled by the
progress argument. The default is TRUE.

9. start — (optional) An integer specifying which iteration number to begin in the
permutation F-calculation. This is useful in cases of restarting, for debugging pur-
poses. If restart occurs, be sure to rename and save results for previous iterations
(filename). The default value is 1.

10. perms — (optional) A TRUE/FALSE logical indicating whether or not to calculate
the NFM F-statistics for all non-redundant permutations of treatment labels. The
default value is TRUE.

A call to the affyNFM function creates a data.frame object with columns gn (for
gene name), F.original (the F-statistic for the original treatment labels), and F.2, ...,
F.nperms, where nperms is the number of non-redundant permutations of treatment labels.
If the filename argument is specified, then this data.frame object will be saved as the
filename.csv file in the wd directory. If the filename argument is not specified, then
this data.frame object is returned. Because of the computational expense to create this
data.frame object, it is recommended to specify the filename argument so that the results
are saved to file.

3.2.1 Non-permutation approach

To save computational time, or if p-value calculation will not be necessary, it is possible to
obtain only the F-statistics for the original treatment labels by specifying perms=FALSE:

> F.frame0 <- affyNFM(abatch = use.abatch, t1 = use.tl, t2 = use.t2,
+ gn = use.gn, perms = FALSE)

Thu Jun 10 12:09:20 2010 Performing background correction and quantile normalization...

Thu Jun 10 12:09:38 2010 Performing nfm
Thu Jun 10 12:10:09 2010 Non-permutation F-statistic calculation complete.

> head(F.frame0)

gn F.original
37777_at 25.6765994741892
684_at 9.58904372054756
1597_at 5.78032489098403
38734_at 42.8220076748622
39058_at 38.1179172895468
36311_at 49.1593223340546

O O WN -

3.2.2 All-permutations approach, saving results to file

Here we calculate the F-statistics for all non-redundant permutations and save the results
to file.

> affyNFM(abatch = use.abatch, t1 = use.tl, t2 = use.t2, gn = use.gn,
+ wd = use.wd, filename = use.filename)

Thu Jun 10 12:10:09 2010 Performing background correction and quantile normalization...

Thu Jun 10 12:10:24 2010 Performing nfm on iteration 1 of 10 ...

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

10
10
10
10
10
10
10
10
10
10

Results

+

o O W N -

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

saved

10:
11:

11

51
19

145
12:
12:
13:
13:
13:
14
14:

11
39
05
31
57
23
50

2010
2010
2010
2010
2010
2010
2010
2010
2010
2010

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

nfm
nfm
nfm
nfm
nfm
nfm
nfm
nfm
nfm

on
on
on
on
on
on
on
on
on

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

of
of
of
of
of
of
of
of

O 00 N O O W N

10

10 ...
10 ...
10 ...
10 ...
10 ...
10 ...
10 ...

10 of 10 ...

as

Empirical sampling distribution complete.
sample.results.csv in directory C:/folder

Then the results are read back in to create the data.frame object use.frame:

use.frame <- read.csv(paste(use.wd,

sep = nny)
head (use.frame)

gn
37777_at
684_at
1597_at
38734_at
39058_at
36311_at

F.original

2

4
3
4

O O W N
O O O O O O

F.7

.33771432
.38901078
.44301189
.39969612
.01048544
.28174217

5.
9.
5.
2.
8.
9.

O O O O O O

676599
589044
780325
822008
117917
159322

R P, O O O O

F.8
.5961576
.8853128
.2581654
.2843751
.3890653
.1727109

O O O O O -

F.2

.154893615
.302653914
.003302107
.579834873
.055835677
.810655086

F.9
.38366286
.83794041
.87816291
.39302122
.97783473
.08822834

O O O O O o

O, Rk P, P, O

F.3

.57092669
.15809471
.05236453
.08875088
.55499753
.37215615

F.10

.5462265
.2396464
.8921279
.3883087
. 7450757
.8243724

O O O O O O

F.4

.17835347
.17460500
.37210233
.04533029
.17294685
.55222583

"/". use.filename,

= O~ N O O

”.CSV”,

F.5
.3033485
.5895994
. 7201865
.7471837
.4088933
.1122678

O O O = O O

F.6

.8860315
.3623032
.2900620
.56329230
.1608452
.1666232

Because the results were saved to file, a progress report was also created. The contents
of this progress report file can be used to monitor run-time:

> progress.frame <- read.csv(paste(use.wd,
”.CSV”, Sep = ""))
> progress.frame

+

1 Thu Jun 10 12:10:24 2010

0

time iteration pct.complete

0

"/progress_", use.filename,

O 00 N O O W N

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

10 Thu
11 Thu

3.2.3 All-permutations approach, not saving results to file

Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun
Jun

10
10
10
10
10
10
10
10
10
10

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

10:
11:
11
12:
12:
13:
13:
13:
14:
14:

51
19

145

11
39
05
31
57
23
50

2010
2010
2010
2010
2010
2010
2010
2010
2010
2010

© 00 NO O W N =

[EE
o

10
20
30
40
50
60
70
80
90
100

We could call the affyNFM function without saving results to file, by not specifying a
filename argument. Here we also demonstrate supression of progress output (to the R
terminal) by specifying verbose=FALSE:

\%

+

\

use.framel <- affyNFM(abatch = use.abatch, tl1 = use.tl, t2 = use.t2,
gn = use.gn, verbose = FALSE)
head (use.framel)

gn

37777_at
684_at

1569

7_at

38734_at
39058_at

3631

1_at

F.original
25.6765994741892
9.58904372054756

42.8220076748622
38.1179172895468
49.1593223340546

F.4

0.178353470062144
0.174605001161088
0.372102334713257
0.0453302868590168
0.172946850738009
0.552225827661248

F.8

0.596157595706377
0.885312834222096
0.258165430067475
0.28437511173146
0.389065288100556
0.17271086919443

0.154893614562845
0.302653913506587
5.78032489098403 0.00330210745250836
0.579834873120239

1.05583567744497

1.81065
F.5

0.303348528976957
0.589599377598369
2.72018645841031
1.74718365560216
0.408893281997868
1.11226775662473

F.9

1.38366285762355
0.837940408668387
0.878162908410805
0.393021223160814
0.977834732317531
0.088228341202868

F.2

F.3

0.570926690897756
0.158094707126131
0.0523645308950134
0.0887508822531098
0.554997530656564

508632521 0.372156154233074

F.6
0.88603154295087
0.3623031949798
1.29006201610316
0.532922994618565
0.160845164164175
0.166623208695875
F.10
0.546226503089202
1.23964643799936
1.89212788535138
1.38830872048363
1.74507567806407
0.824372434122621

F.7
0.33771431582125
0.389010777310083
0.443011887349268
0.399696124974263
0.0104854439155456
0.281742167701483

Note that this use.framel object is equivalent to the previously defined use.frame
object.

3.3 P-value calculation from permutation results

If NFM F-statistics were calculated for all non-redundant permutations of treatment labels,
then a permutation p-value can be calculated for each gene by calling the nfm.pvals
function. This function takes just one argument, a data.frame object in the same format
as returned by the affyNFM function. The nfm.pvals function returns a data.frame
object with named columns representing the gene name, original NFM F-statistic, and
permutation p-value.

> use.frame <- read.csv(paste(use.wd, "/", use.filename, ".csv",
+ sep = ""))
> pframe <- nfm.pvals(use.frame)
> head(pframe)

gn F P
1 37777_at 25.676599 0.009482759
2 684_at 9.589044 0.019827586
3 1597_at 5.780325 0.050000000
4 38734_at 42.822008 0.004310345
5 39058_at 38.117917 0.006896552
6 36311_at 49.159322 0.003448276

4 Assessment of sample analysis

For purposes of demonstration with these spike-in data, we can convert the p-values to g-
values and check which of the spike-in probesets were identified as significantly differentially
expressed by the NFM approach when controlling the FDR at 0.10. We first generate the
necessary data.frame object (g). Note that in addition to the three columns returned by
the nfm.pvals function, this object g has additional columns for the g-value (q), the control
concentration (C), and the treatment concentration (T), for only the spike-in probesets.

> library(qvalue)

> pframe$q <- qvalue(p = pframe$p)$q

> t.spike <- is.element(pframe$gn, gn.spike)

> conc.ctl <- as.numeric(pData(use.abatch)[1,])

> conc.trt <- as.numeric(pData(use.abatch)[4,])

> f <- data.frame(gn = gn.spike, C = conc.ctl, T = conc.trt)

> g <- merge(f,

\%

head(g)

gn
1024 _at
1091_at
1597 _at
1708_at
33818_at
36085_at

O O W

Now we generate Figure 1 to summarize the result. Note that similar figures are re-

16.
512.

1024.
256.
64.

pframe)

O O O 01 O O

T F
32 40.306978
1024 31.997610
1 5.780325

0 812.866437
512 170.847848
128 35.654643

ported in Stevens et al. (2010).

References

[1] Hackstadt, A.J. and Hess, A.M. (2009) “Filtering for Increased Power for Microarray

O O O O O O

%

.005172414
.008620690
.050000000
.000862069
.001724138
.007758621

Data Analysis,” BMC' Bioinformatics, 10:11.

[2] Stevens, J.R., Bell, J.L, Aston, K.I., and White, K.L. (2010) “A Comparison of Probe-
Level and Probeset Models for Small-Sample Gene Expression Data,” BMC' Bioinfor-

matics, 11:281.

O O O O O O

q

.09765192
.09765192
.35398820
.09765192
.09765192
.09765192

> eps <- 0.1
> plot(g$C + eps, g$T + eps, log = "xy", pch = 1, cex = 20 * g$q,
+ xlab = "Control Concentration (pM)", ylab = "Treatment Concentration (pM)",
+ main = "Sample Analysis: spike-in g-values", col.axis = NA)
>t <- g$q <= 0.1
> points(g$C[t] + eps, g$T[t] + eps, pch = 16, cex = 20 * g$qlt],
+ col = "#08519C")
> axis(side = 1, labels = c(0, 1, 10, 100, 1000), at = c(0.1, 1,
+ 10, 100, 1000))
> axis(side = 2, labels = c(0, 1, 10, 100, 1000), at = c(0.1, 1,
+ 10, 100, 1000))
Sample Analysis: spike—in g-values
o
S - o
—l
[
S 8- ®
o —
= L
5
S o _ ®
é [
= @
£ ®
©
=
'_
O
SE ®
I I I I I
0 1 10 100 1000

Control Concentration (pM)

Figure 1: Bubble plot for the spike-in probesets in the sample analysis. The horizontal
and vertical axes are the spike-in concentrations for the control and treatment conditions,
with tick marks on the log scale. The size of the plotting character for each spike-in gene
is proportional to the corresponding q-value (converted from NFM permutation p-value).
Q-values less than 0.1 are represented as closed blue dots, while g-values greater than 0.1
are represented as open circles. Statistical significance (g-value < 0.1) is more common for
genes with higher control and treatment concentrations.

