Field Axioms

A set *F* together with two well-defined operations called addition and multiplication is a <u>field</u> if there exists elements 0, and 1 ($0 \neq 1$) and the following axioms are satisfied for all a, b, and c in *F*.

Name	Addition	Multiplication
Commutativity	a+b=b+a	ab = ba
Associativity	(a+b)+c = a + (b+c)	(ab)c = a(bc)
Distributivity	a(b+c) = ab + ac	(a+b)c = ac + bc
Identity	a+0=a=0+a	$a \cdot 1 = a = 1 \cdot a$
Inverses	a + (-a) = 0 = (-a) + a	$aa^{-1} = 1 = a^{-1}a$ if $a \neq 0$

A field *F* is <u>ordered</u> if, in addition to the field axioms above, there exist a relation " \leq " on *F* such that the following axioms are also satisfied for all a, b, and c in *F*.

- i) Given *a*, and *b* in *F*, either $a \le b$ or $b \le a$.
- ii) If $a \le b$ and $b \le a$ then a = b.
- iii) If $a \le b$ and $b \le c$ then $a \le c$.
- iv) If $a \le b$ then $a + c \le b + c$.
- v) If $a \le b$ and $0 \le c$ then $ac \le bc$.