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Abstract

This paper concerns existence and multiplicity of ground states and bound states
of the time-independent Schrödinger system




−∆uj + λjuj =

N∑
i=1

βiju
2
i uj in Rn,

uj(x) → 0 as |x| → ∞, j = 1, . . . , N,

where n = 2, 3, N ≥ 2, λj > 0 for j = 1, · · · , N , βjj > 0 for j = 1, · · · , N ,

and βij = βji. In the attractive case we give sufficient condition for existence

of co-existing ground states with large couplings, and in the repulsive case we

prove existence of infinitely many co-existing bound state solutions with arbitrary

couplings.
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1 Introduction

Consider the time-independent Schrödinger system



−∆uj + λjuj =

N∑

i=1

βiju
2
i uj in Rn,

uj(x) → 0 as |x| → ∞, j = 1, . . . , N,

(1.1)

where n = 2, 3, N ≥ 2, λj > 0 for j = 1, · · · , N , βij are constants satisfying
βij = βji and βjj > 0 for j = 1, · · · , N . If ~u = (u1, · · · , uN ) is a solution of (1.1),
then the function (Φ1, . . . , ΦN ) : Rn × R → CN , defined by Φj(x, t) = eiλj t uj(x),
j = 1, . . . , N , is a standing wave solution of the time-dependent system of N coupled
nonlinear Schrödinger equations




− i

∂

∂t
Φj = ∆Φj +

N∑

i=1

βij |Φi|2Φj for x ∈ Rn, t > 0,

Φj(x, t) → 0 as |x| → +∞, t > 0, j = 1, . . . , N.

(1.2)

The system (1.2) models naturally many physical problems, especially in non-
linear optics. Physically, the solution Φj denotes the j-th component of the beam in
Kerr-like photorefractive media ([1]). The positive constant βjj is for self-focusing
in the j-th component of the beam. The coupling constant βij (i 6= j) is the inter-
action between the i-th and the j-th components of the beam. Problem (1.2) also
arises in the Hartree-Fock theory for Bose-Einstein condensates ([11]). Physically,
Φj are the corresponding condensate amplitudes, βjj and βij are the intraspecies
and interspecies scattering lengths. The sign of the scattering length βij determines
whether the interactions of states |i〉 and |j〉 are repulsive or attractive. For more
references we refer the reader to [1, 8, 11, 12, 13, 14, 15, 22, 28].

In the last several years there has been intensive work on the existence, multi-
plicity and qualitative property of ground and bound state nontrivial solutions for
systems like (1.1). Here and below by a nontrivial solution of (1.1), we mean a
solution ~u = (u1, · · · , uN ) with each component uj being nonzero. In the litera-
ture these solutions are also referred to as co-existing solutions. It is an important
feature of the study for these type of systems that one needs to distinguish non-
trivial solutions from semitrivial solutions (solutions with one or more components
being zero). We call a solution a ground state solution if it corresponds to the least
nonzero critical value of the associated energy functional. Note that this definition
is different from the one given in [16], where a solution is called a ground state solu-
tion if it has the least energy among all the energies of nontrivial positive solutions
of (1.1). We will distinguish two cases, the attractive case: βij > 0 for i 6= j, and
the repulsive (or competition) case: βij < 0 for i 6= j. It turns out the systems have
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quite different behaviors for the two cases. The existing work mainly has been on
systems with two equations (i.e., N = 2). For examples, following the work [16] by
Lin and Wei about the existence of ground state solutions with small couplings for
a general N -system, a number of papers have been devoted to the existence theory
of solutions for the 2-system in various different parameter regimes of nonlinear
couplings; see [2, 3, 4, 5, 6, 9, 19, 20, 23, 26, 29, 30] for the existence of ground state
or bound state solutions and their limiting property with large couplings both for
repulsive and attractive cases, [17, 18, 21, 24] for semiclassical states or singularly
perturbed settings.

For a general N -system, except the early work in [16], for small couplings (i.e.,
βij with i 6= j small), not much has been studied so far. Some partial work was
given in [3, 26] (see Remark 2.4 c) below in details). In particular, for a general
N -system with large couplings in the attractive case (i.e., βij with i 6= j tend to
plus infinity) the question whether there exists a nontrivial solution and whether
the ground state is nontrivial still seem open.

In this paper, we establish a framework to study the general N -system. Our goal
is two fold. One is to provide a sufficient condition for the existence of a nontrivial
ground state solution for the attractive case with large nonlinear couplings. This
would provide an answer to the open question above. The method used to establish
this result is by estimates of energies. Another goal of the paper is to establish
a multiplicity result of bound state solutions for the repulsive (competition) case.
This result generalizes an earlier work of ours in [19] which requires small couplings.
The result here applies to arbitrary couplings. We provide two proofs of the result,
one based on the method of critical point theory in the setting of invariant sets
of the gradient flows and the other based on the minimax method on a Nehari
manifold.

The paper is organized as follows. In section 2 we state and prove the result
on the existence of a nontrivial ground state solution in the attractive case with
large couplings. In section 3 we state and prove the result on the multiplicity of
nontrivial bound state solutions in the repulsive case with arbitrary couplings. We
finish the paper in section 4 with some further remarks.

2 A nontrivial ground state in the attractive case

Consider the Schrödinger system



−∆uj + λjuj =

N∑

i=1

βiju
2
i uj in Rn,

uj(x) > 0, uj(x) → 0, as |x| → ∞, j = 1, 2, · · · , N,

(2.1)

where n = 2, 3, N ≥ 2, λj > 0 for j = 1, · · · , N , βij are constants satisfying
βij = βji and βij > 0.

Let E = H1
r (Rn) be the space consisting of spherically symmetric functions in
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H1(Rn) in which we shall use the equivalent inner products

(u, v)j =
∫

Rn

∇u · ∇v + λjuv, j = 1, 2, · · · , N

and the induced norms ‖ ·‖j . Here the fact that λj > 0 has been used. The product

space EN =

N︷ ︸︸ ︷
E × E × · · · × E is a subspace of (H1(Rn))N endowed with the inner

product

(~u, ~v) =
N∑

j=1

(uj , vj)j , ~u = (u1, · · · , uN ), ~v = (v1, · · · , vN ).

Solutions of (1.1) correspond to critical points of the functional

Φ(~u) =
1
2
‖~u‖2 − 1

4

N∑

i,j=1

βij

∫

Rn

u2
i u

2
j , ~u = (u1, u2, · · · , uN ) ∈ (H1(Rn))N ,

and spherically symmetric solutions of (1.1) correspond to critical points of the
functional

J(~u) = Φ|EN (~u), ~u = (u1, u2, · · · , uN ) ∈ EN .

Note that J ∈ C2(EN ) and J satisfies the (PS) condition. It is easy to check that J
has a mountain pass geometry and has a mountain pass critical point. Clearly, any
critical value of J is a critical value of Φ according to the principle of symmetric
criticality. The functional Φ is also in the class of C2 and has a mountain pass
geometry, but it does not satisfy the (PS) condition. We show that the mountain
pass value of Φ is equal to the mountain pass critical value of J , and hence is
a critical value. To this end, for any ~u = (u1, · · · , un) ∈ (H1(Rn))N with each
component being nonnegative, denote ~u∗ = (u∗1, · · · , u∗n) with u∗j being the Schwarz
symmetrization of uj . Then

J(~u∗) ≤ Φ(~u),

since, for all i, j, ∫

Rn

|∇u∗j |2 ≤
∫

Rn

|∇uj |2,
∫

Rn

(u∗j )
2 =

∫

Rn

(uj)2,

and ∫

Rn

(u∗i )
2(u∗j )

2 ≥
∫

Rn

(ui)2(uj)2.

This implies the mountain pass value of Φ is equal to the mountain pass critical
value of J , and hence it is a critical value. It is easy to see the mountain pass
critical value of Φ is the least positive critical value of Φ. Due to this reason, we
call a solution ground state if it corresponds to the mountain pass critical value of
J .
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However in general this energy level may not correspond to nontrivial critical
points. The case N = 2 has been studied extensively in the last few years. Let
us call β := β12 in this case which is the lone coupling constant for N = 2. In [5]
(see also [2, 3, 6, 20, 26] with similar or different arguments) by using mountain
pass theorem and Morse theory, it is proved that there is a β0 > 0 such that for
β > β0 the ground state solution (i.e., the mountain pass solution) is nontrivial and
for β < β0 the ground state solution is semitrivial in the sense that the solution
is of the form (w, 0) or (0, w) with one null component. It seems still an open
question under what conditions the ground state solution for a general N -system
is nontrivial. We provide a sufficient condition here which guarantees the ground
state is nontrivial. To state our result we need some notations.

First we note that the least positive critical value of Φ can also be reformulated
as the infimum of the following functional I

I(~u) =

∑N
j=1

∫
Rn |∇uj |2 + λju

2
j

(
∑N

i,j=1 βij

∫
Rn u2

i u
2
j )1/2

, ~u ∈ (H1(Rn))N , ~u 6= 0.

Define

c = inf
u∈H1(Rn), u 6=0

∫
Rn |∇u|2 + u2

(
∫
Rn u4)1/2

= inf
u∈H1

r (Rn), u 6=0

∫
Rn |∇u|2 + u2

(
∫
Rn u4)1/2

,

and let U be the unique positive and spherically symmetric minimizer for c. Then,
for λ > 0,

cλ1−n
4 = inf

u∈H1(Rn), u 6=0

∫
Rn |∇u|2 + λu2

(
∫
Rn u4)1/2

= inf
u∈H1

r (Rn), u 6=0

∫
Rn |∇u|2 + λu2

(
∫
Rn u4)1/2

,

for which Uλ(x) = U(
√

λx) is the unique positive and spherically symmetric mini-
mizer. Denote, for λ > 0,

α(λ) =

∫
Rn |∇U |2 + U2

∫
Rn |∇U |2 + λU2

.

We need the following assumption (A): For some λ > 0,

N∑

i,j=1

βijα(
λi

λ
)α(

λj

λ
) > N2

[
max

1≤j≤N
βjj(

λ

λj
)2−

n
2

+
N − 2
N − 1

max
1≤i,j≤N, i 6=j

βij(
λ

λi
)1−

n
4 (

λ

λj
)1−

n
4

]
.

Theorem 2.1. If (A) holds, then (2.1) has a nontrivial ground state solution which
is spherically symmetric and is given by, up to a Lagrange multiplier, a minimizer
of the minimization problem

inf
~u∈(H1(Rn))N , ~u6=0

I(~u).
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Proof. Using Schwarz symmetrization, we see that

m(N) := inf
~u∈(H1(Rn))N , ~u6=0

I(~u) = inf
~u∈EN , ~u6=0

I(~u).

Therefore, the infimum m(N) is achieved by a spherically symmetric element ~u0 =
(u0

1, · · · , u0
n). Replacing u0

j with |u0
j | if necessary, we can assume that u0

j ≥ 0. It
suffices to prove that u0

j > 0 for each j. Choosing uj =
√

α(λj/λ)Uλ, we have, for
any j,

∫

Rn

|∇uj |2 + λju
2
j = α(λj/λ)

∫

Rn

|∇Uλ|2 + λjU
2
λ

= λ1−n
2 α(λj/λ)

∫

Rn

|∇U |2 + (λj/λ)U2

= λ1−n
2

∫

Rn

|∇U |2 + U2

=
∫

Rn

|∇Uλ|2 + λU2
λ,

which implies

N∑

i,j=1

βij

∫

Rn

u2
i u

2
j

=
N∑

i,j=1

βijα(λi/λ)α(λj/λ)
∫

Rn

U4
λ

=
1

λ2−n
2 c2

N∑

i,j=1

βijα(λi/λ)α(λj/λ)
(∫

Rn

|∇Uλ|2 + λU2
λ

)2

=
1

λ2−n
2 c2N2

N∑

i,j=1

βijα(λi/λ)α(λj/λ)

(
N∑

k=1

∫

Rn

|∇uk|2 + λku2
k

)2

.

Therefore,

m(N) ≤ cNλ1−n
4√∑N

i,j=1 βijα(λi/λ)α(λj/λ)
.

Using Schwarz symmetrization again, we infer that

m(N, s) := inf
~u∈(H1(Rn))N , ~u6=0, us=0

I(~u) = inf
~u∈EN , ~u6=0, us=0

I(~u), s = 1, 2, · · · , N.
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Note that if uN = 0 then

N∑

i,j=1

βij

∫

Rn

u2
i u

2
j ≤

N−1∑

i,j=1

βij

(∫

Rn

u4
i

)1/2 (∫

Rn

u4
j

)1/2

≤ 1
c2

N−1∑

i,j=1

βij

λ
1−n

4
i λ

1−n
4

j

∫

Rn

(|∇ui|2 + λiu
2
i )

∫

Rn

(|∇uj |2 + λju
2
j )

≤ 1
c2

{
max

1≤j≤N−1

βjj

λ
2−n

2
j

N−1∑

k=1

(∫

Rn

|∇uk|2 + λku2
k

)2

+ max
i 6=j, 1≤i,j≤N−1

βij

λ
1−n

4
i λ

1−n
4

j

N−1∑

i 6=j

∫

Rn

(|∇ui|2 + λiu
2
i )

∫

Rn

(|∇uj |2 + λju
2
j )





≤ 1
c2

{
max

1≤j≤N−1

βjj

λ
2−n

2
j

+
N − 2
N − 1

max
i 6=j, 1≤i,j≤N−1

βij

λ
1−n

4
i λ

1−n
4

j

}

×
(

N∑

k=1

∫

Rn

|∇uk|2 + λku2
k

)2

.

Therefore,

m(N, N) ≥ c√
max

1≤j≤N−1

βjj

λ
2−n

2
j

+ N−2
N−1 max

i 6=j, 1≤i,j≤N−1

βij

λ
1−n

4
i λ

1−n
4

j

.

The same estimate applies also to m(N, s), s = 1, 2, · · · , N − 1. Now, if (A) is
satisfied then

m(N) < min{m(N, 1), m(N, 2), · · · , m(N,N)},
which implies u0

j 6= 0 and therefore u0
j > 0 for each j. The maximum principle

implies that u0
j (x) > 0 for all j and x ∈ Rn. Now (m(N)/‖~u0‖)~u0 is a nontrivial

ground solution of (2.1) which is spherically symmetric. The proof is complete.

Remark 2.2. If λ and βjj (j = 1, 2, · · · , N) are fixed, then there exist δ > 0 and
β∗ > 0 such that (A) holds provided that |λj − λ| < δ for all j and |βij − β| < δ for
all i 6= j and for some β > β∗. In particular, if λ1 = · · · = λN = λ and βij = β for
i 6= j, then (A) reduces to β > N(N − 1)max1≤j≤N βjj − N−1(N − 1)

∑N
j=1 βjj .

Therefore, we have the following corollary.

Corollary 2.3. Let λ1 = · · · = λN = λ and βjj (j = 1, 2, ..., N) be fixed. Assume
βij = β for i 6= j. If β > N(N − 1) max1≤j≤N βjj − N−1(N − 1)

∑N
j=1 βjj, then

(2.1) has a nontrivial ground state solution which is spherically symmetric and is
given by, up to a Lagrange multiplier, a minimizer of the minimization problem

inf
~u∈(H1(Rn))N , ~u6=0

I(~u).
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Remark 2.4. a). It seems quite natural and necessary in some sense to require the
couplings βij , i 6= j, large relative to βjj , j = 1, ..., N , as the non-existence result
on positive solutions in [5] asserts that in the attractive case if the λj ’s are non-
increasing and the βij ’s are non-decreasing in i and j, then (2.1) admits no positive
solutions unless λj = λ and βij = β for all i, j = 1, ..., N , some positive constants
λ, β.

b). We believe the condition (A) is not sharp for the existence of a nontrivial
ground state. In the case of the 2-system (there is only one coupling constant
β := β12 = β21), in [2, 3, 5, 6, 20, 26] more precise estimates on the size of a β0 have
been given to assure for β > β0 the existence of a nontrivial ground state solution.

c). Partial results on the existence of nontrivial ground states of higher di-
mensional systems were also given in [3, 26]. In [3] a 3-system was discussed under
conditions that assure all three semi-trivial solutions with single nonzero component
are saddle points on the Nehari manifold so the minimizer on the Nehari manifold
has at least two nonzero components. In [26] a set of structure conditions involving
matrix (βij) and vector (λj) (Hypotheses 1-6 there) are assumed to assert the exis-
tence of a nontrivial ground state. It does not seem easy to compare our condition
(A) with theirs.

3 Multiple bound states in the repulsive case

Again consider the Schrödinger system



−∆uj + λjuj =

N∑

i=1

βiju
2
i uj in Rn,

uj(x) → 0 as |x| → ∞, j = 1, . . . , N,

(3.1)

where n = 2, 3, N ≥ 2, λj > 0 for j = 1, · · · , N , βij are constants satisfying
βij = βji, βjj > 0 for j = 1, · · · , N and βij ≤ 0 for i 6= j, i, j = 1, ..., N . We again
look for nontrivial solutions with each component nonzero.

We shall prove the following theorem.

Theorem 3.1. Assume N ≥ 2, n = 2, 3, λj > 0, βjj > 0 for j = 1, · · · , N ,
and βij ≤ 0 for i 6= j, i, j = 1, ..., N . Then (3.1) has infinitely many nontrivial
spherically symmetric solutions.

Remark 3.2. This result extends an earlier one in [19] where the nonlinear cou-
plings βij for i 6= j are assumed to be small. Some interesting multiplicity results
on nontrivial positive solutions have been given recently in [4, 9, 27, 30]. We remark
that in [9, 30] multiplicity results on positive solutions were proved for a 2-system
with a symmetric structure: λ1 = λ2, µ1 = µ2. In this case there is symmetry in
the system in that if (u1, u2) is a solution so is (u2, u1). A result of a similar nature
but without requiring the symmetric condition µ1 = µ2 was given in [4] by using
a global bifurcation approach. In [27] a multiplicity result on positive solutions
is given for a symmetric case of the general N -system where it is assumed that
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λj = µj = 1 for all j and βij = β for i 6= j, and solutions are constructed for −β
sufficiently large, with each component separating in many pulses from the others.
The solutions constructed in Theorem 3.1 of our paper may be of different types
from that in the above mentioned papers and are potentially nodal type solutions.

3.1 A proof based on invariant sets of the gradient flow

As in the last section, we work in E = H1
r (Rn). Spherically symmetric solutions of

(3.1) correspond to critical points of the functional

J(~u) =
1
2
‖~u‖2 − 1

4

N∑

i,j=1

βij

∫

Rn

u2
i u

2
j , ~u = (u1, u2, · · · , uN ) ∈ EN .

Note that J ∈ C2(EN ), J satisfies the (PS) condition, and

∇J(~u) = ~u−A(~u), ~u = (u1, u2, · · · , uN ) ∈ EN ,

where A(~u) = ((A(~u))1, (A(~u))2, · · · , (A(~u))N ) and

(A(~u))j = (−∆ + λjI)−1(
N∑

i=1

βiju
2
i uj).

Proof of Theorem 3.1. Let ϕt(~u) with the maximal interval of existence [0, η(~u)) be
the solution of the initial value problem

{
d
dtϕ

t = −∇J(ϕt), for t ≥ 0,
ϕ0 = ~u.

We say the map ϕ : {(t, ~u)| ~u ∈ EN , t ∈ [0, η(~u))} → EN is the gradient flow of J .
A subset F of EN is said to be an invariant set for the flow if ϕ(t, ~u) ∈ F for all
~u ∈ F and t ∈ [0, η(~u)). For two invariant sets F ⊂ G, we say F is strictly invariant
with respect to G if ϕ(t, ~u) ∈ intGF for all ~u ∈ F and t ∈ (0, η(~u)) where intGF is
the interior of F in G. Define

A0 = {~u ∈ EN | lim
t→η(~u)−0

ϕt(~u) = 0}.

It is clear that 0 is a strict local minimizer of J , A0 is an open neighborhood of 0
in EN , ∂A0 is an invariant set, and inf∂A0 J > 0; see [19].

For any ~u ∈ EN , since βij ≤ 0 for i 6= j, we have

(uj , (A(~u))j)j =
N∑

i=1

βij

∫

Rn

u2
i u

2
j ≤ βjj

∫

Rn

u4
j ≤ Cj‖uj‖4j ,
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where Cj is a positive constant. Therefore, if 0 < Cj‖uj‖2j < 1 then for h > 0
sufficiently small

‖uj + h(−uj + (A(~u))j)‖2j
=‖uj‖2j − 2h(‖uj‖2j − (uj , (A(~u))j)j) + h2‖uj − (A(~u))j‖2j
≤‖uj‖2j − 2h‖uj‖2j (1− Cj‖uj‖2j ) + h2‖uj − (A(~u))j‖2j
<‖uj‖2j .

Choose r > 0 such that Br(0) ⊂ A0. Set

ε0 =
1
2

min
{

C
− 1

2
1 , · · · , C

− 1
2

N , rN− 1
2

}
.

Define, for ε ∈ (0, ε0] and j = 1, 2, · · · , N ,

Dε
j = {~u | ~u = (u1, u2, · · · , uN ) ∈ EN , ‖uj‖j ≤ ε}.

For any ~u ∈ Dε
j , j = 1, 2, · · · , N , if h > 0 is sufficiently small then the discussion

above shows that
~u + h(−∇J(~u)) ∈ int(Dε

j ).

According to [10, Section 4], for any ~u ∈ Dε
j there exists t0 = t0(~u, ε, j) > 0 such

that ϕt(~u) ∈ int(Dε
j ) for t ∈ (0, t0). This implies that ϕt(~u) ∈ ∂A0 ∩ int(Dε

j ) for
~u ∈ ∂A0 ∩ Dε

j , t ∈ (0, η(~u)), j = 1, 2, · · · , N , and 0 < ε ≤ ε0. Therefore, ∂A0 ∩ Dε
j ,

j = 1, 2, · · · , N , 0 < ε ≤ ε0, are strictly invariant sets with respect to ∂A0 and
η(~u) = +∞ for ~u ∈ ∂A0 ∩ Dε

j . Define

A1 = {~u ∈ ∂A0 | ∃ t > 0 such that ϕt(~u) ∈ ∪N
j=1 int(Dε0

j )}.

Then A1 is an open subset of ∂A0, and ∂A0 \ A1 is closed and invariant for the
flow. We want to prove

gen(∂A0 \ A1) = +∞,

where gen(·) is the genus of a closed symmetric subset of EN .
For any k ∈ N, since βjj > 0, there exist k-dimensional subspaces F1, · · · , FN

of E = H1
r (Rn) such that A0 ∩ (F1 × · · · × FN ) is bounded. Indeed, we may, for

example, choose a k-dimensional subspace Fj from H1
0,r(Ωj), with Ω1, · · · ,ΩN being

mutually disjoint spherically symmetric domains. Then

J(~u) =
1
2
‖~u‖2 − 1

4

N∑

j=1

βjj

∫

Rn

u4
j , ~u = (u1, u2, · · · , uN ) ∈ F1 × · · · × FN ,

which implies J(~u) → −∞ as ~u ∈ F1 × · · · × FN and ‖~u‖ → ∞, and therefore
A0 ∩ (F1 × · · · × FN ) is bounded. Denote

F = F1 × · · · × FN .
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Then
gen(∂A0 ∩ F ) = kN.

For ~u ∈ A1, since ∂A0 ∩ Dε
j , j = 1, 2, · · · , N , 0 < ε ≤ ε0, are strictly invariant

sets with respect to ∂A0, there exists t > 0 such that ϕt(~u) ∈ ∪N
j=1Dε0/2

j and the
function τ : A1 → R+ defined by

τ(~u) = inf{t ≥ 0 : ϕt(~u) ∈ ∪N
j=1Dε0/2

j }

is even and continuous. Since ε0 ≤ 1
2rN− 1

2 ,

∩N
j=1Dε0/2

j ⊂ B√Nε0/2(0) ⊂ Br(0) ⊂ A0.

Therefore, since A1 ⊂ ∂A0 and since A1 is invariant, ϕt(~u) 6∈ ∩N
j=1Dε0/2

j for ~u ∈ A1

and t > 0.
Define a map h : A1 ∩ F → F as

h(~u) = (γ1(~u)u1, γ2(~u)u2, · · · , γN (~u)uN ),

where

γi(~u) =





1, if ‖ϕτ(~u)
i (~u)‖i ≥ ε0,

2
ε0
‖ϕτ(~u)

i (~u)‖i − 1, if ε0/2 < ‖ϕτ(~u)
i (~u)‖i < ε0,

0, if ‖ϕτ(~u)
i (~u)‖i ≤ ε0/2,

and ϕt
i is the ith component of ϕt. Then h : F ∩ A1 → F is odd and continuous.

For any ~u ∈ A1 ∩ F , the definition of τ(~u) implies that

‖ϕτ(~u)
i1

(~u)‖i1 ≤ ε0/2, for at least one i1 ∈ {1, · · · , N},

while the fact that ϕt(~u) 6∈ ∩N
j=1Dε0/2

j for any t > 0 implies that

‖ϕτ(~u)
i2

(~u)‖i2 > ε0/2, for at least one i2 ∈ {1, · · · , N}.

Note that ‖ϕτ(~u)
i2

(~u)‖i2 > ε0/2 implies ‖ui2‖i2 > ε0/2. Therefore

γi1(~u)ui1 = 0, γi2(~u)ui2 6= 0, for any ~u ∈ A1 ∩ F. (3.2)

Let {ej1, · · · , ejk} be a base of Fj for j = 1, · · · , N . Using this base we can define
an isomorphism Tj : Fj → Rk as

Tju = (α1, · · · , αk) if u =
k∑

i=1

αieji.

Define
W = {~u = (u1, · · · , uN ) ∈ F : T1u1 = · · · = TNuN}
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and let V be the orthogonal complement of W in F . Then dim W = k and dim V =
k(N −1). Denote by g : F → V the orthogonal projection from F to V . From (3.2)
we see that

W ∩ h(A1 ∩ F ) = ∅,
and g ◦ h : A1 ∩ F → V \ {0} is odd and continuous. Therefore

gen(A1 ∩ F ) ≤ dim V = (N − 1)k,

which implies

gen(∂A0 \ A1) ≥ gen((∂A0 \ A1) ∩ F ) ≥ gen(∂A0 ∩ F )− gen(A1 ∩ F )
≥Nk − (N − 1)k = k.

Since k is arbitrary, we have

gen(∂A0 \ A1) = ∞.

Define
di = inf

A∈Σi

sup
~u∈A

J(~u),

where
Σi = {A | A ⊂ ∂A0 \ A1, gen(A) ≥ i}, i = 1, 2, · · · .

Now standard arguments (see, for example, [25]) can be used to obtain the conclu-
sion. The proof is complete.

3.2 A proof based on Nehari manifold

Define

N = {~u = (u1, · · · , uN ) ∈ EN | uj 6= 0, ‖uj‖2j =
N∑

i=1

βij

∫

Rn

u2
i u

2
j , j = 1, · · · , N}.

We shall use N to find nontrivial spherically symmetric solutions of (1.1).
Note that N is not the classical Nehari manifold and, generally, a critical point

of J |N need not be a critical point of J . However, we have the following lemma
stating that N is a natural constraint of J .

Lemma 3.3. Critical points of J |N are critical points of J under the assumptions
of Theorem 3.1.

Proof. Let ~u ∈ N be a critical point of J |N . Denote

Φj(~u) = ‖uj‖2j −
N∑

i=1

βij

∫

Rn

u2
i u

2
j , j = 1, · · · , N.
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Then there exist real numbers α1, · · · , αN such that

∇J(~u)−
N∑

j=1

αj∇Φj(~u) = 0.

Multiplying the jth component of the last equation with uj and taking integral for
j = 1, · · · , N we have





â11α1 + · · ·+ â1NαN = Φ1(~u) = 0
...

...
âN1α1 + · · ·+ âNNαN = ΦN (~u) = 0,

(3.3)

where

âij =
(

∂Φi(~u)
∂uj

, uj

)

j

= −2βij

∫

Rn

u2
i u

2
j .

Denote
aij = − âij

2
= βij

∫

Rn

u2
i u

2
j , i, j = 1, · · · , N.

Then aij satisfy




ajj > 0 for j = 1, · · · , N,
aij ≤ 0 for i, j = 1, · · · , N with i 6= j,
aij = aji for i, j = 1, · · · , N,∑N

i=1 aij > 0 for j = 1, · · · , N.

(3.4)

Denote by ∆ the determinant of the matrix (aij). Then, clearly, ∆ > 0 for
N = 1, 2. We shall use an induction argument to show that ∆ > 0 for N ≥ 3 and
thus assume it is true for matrices of order N −1 and consider a matrix of order N .
For i = 2, · · · , N , subtracting the first row multiplied with ai1/a11 from the ith row
and then subtracting the first column multiplied with ai1/a11 from the ith column,
we see that

∆ =

∣∣∣∣∣∣∣∣∣

a11 0 · · · 0
0 ã22 · · · ã2N

...
...

. . .
...

0 ãN2 · · · ãNN

∣∣∣∣∣∣∣∣∣
,

where
ãij = aij − a1ia1j

a11
, for i, j = 2, · · · , N.

Since aij satisfy (3.4), ãij satisfy

ãjj = ajj − a1ja1j

a11
=

1
a11

[a11(a1j + ajj)− a1j(a11 + a1j)] > 0, for j = 2, · · · , N,

ãij = aij − a1ia1j

a11
≤ 0, for i, j = 2, · · · , N with i 6= j,
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ãij = ãji, for i, j = 2, · · · , N,

and for j = 2, · · · , N ,

N∑

i=2

ãij =
N∑

i=2

aij − a1j

a11

N∑

i=2

a1i =
1

a11

(
a11

N∑

i=1

aij − a1j

N∑

i=1

a1i

)
> 0.

Therefore, ãij , i, j = 2, · · · , N , satisfy (3.4), and by the induction assumption
∣∣∣∣∣∣∣

ã22 · · · ã2N

...
. . .

...
ãN2 · · · ãNN

∣∣∣∣∣∣∣
> 0,

which implies ∆ > 0.
In view of (3.3), we then see that α1 = · · · = αN = 0. Therefore, ∇J(~u) = 0

and ~u is a critical point of J . The proof is complete.

Remark 3.4. It is still possible to show that N is a natural constraint of J when
βij (i 6= j) are positive and small. For example, if for some constant ν > N − 1,

|βij | ≤ 1
ν

√
βiiβjj for i 6= j, (3.5)

then for any (α1, · · · , αN ) ∈ Rn with (α1, · · · , αN ) 6= 0 and ~u ∈ N
N∑

i,j=1

αiαjβij

∫

Rn

u2
i u

2
j

≥
N∑

j=1

α2
jβjj

∫

Rn

u4
j −

1
ν

∑

i 6=j

|αiαj |
√

βiiβjj

∫

Rn

u2
i u

2
j

≥
(

1− N − 1
ν

) N∑

j=1

α2
jβjj

∫

Rn

u4
j > 0.

Therefore, critical points of J |N are critical points of J if (3.5) is satisfied. However,
the constrained functional J |N may not satisfy the (PS) condition even if J always
satisfies the (PS) condition. For example, it was pointed out in [26, Theorem
2(iii)] that when N = 2 and β11 ≤ β12 <

√
β11β22, J |N does not satisfy the (PS)

condition though critical points of J |N are critical points of J . Nevertheless, we
have the following lemma in the repulsive case.

Lemma 3.5. The constrained functional J |N satisfies the (PS) condition under the
assumptions of Theorem 3.1.

Proof. Let (~um) ⊂ N be a (PS) sequence for J |N . Then (~um) is bounded in EN

and there exist real numbers αm
1 , · · · , αm

N such that

∇J(~um)−
N∑

j=1

αm
j ∇Φj(~um) = o(1).
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Therefore, we have




am
11α

m
1 + · · ·+ am

1Nαm
N = o(1)

...
...

am
N1α

m
1 + · · ·+ am

NNαm
N = o(1),

(3.6)

where
am

ij = βij

∫

Rn

(um
i )2(um

j )2.

For any ~u ∈ N , since βij ≤ 0 (i 6= j),

‖uj‖2j =
N∑

i=1

βij

∫

Rn

u2
i u

2
j ≤ βjj

∫

Rn

u4
j ,

and therefore there exists δ > 0 such that for any ~u ∈ N
‖uj‖2j > δ, j = 1, · · · , N.

Let λm be the smallest eigenvalue of the matrix



am
11 · · · am

1N
...

. . .
...

am
N1 · · · am

NN


 ,

with corresponding eigenvector xm = (xm
1 , · · · , xm

N )T . Suppose

|xm
j | = max{|xm

1 |, · · · , |xm
N |}.

Since am
ij ≤ 0 (i 6= j) and

am
j1x

m
1 + · · ·+ am

jNxm
N = λmxm

j ,

we see that

λm = am
jj +

∑

i, i 6=j

am
ji

xm
i

xm
j

≥ am
jj −

∑

i, i 6=j

|am
ji | =

N∑

i=1

am
ji = ‖um

j ‖2j > δ.

From this observation and (3.6) we deduce that

αm
j = o(1), j = 1, · · · , N.

Then (~um) is a (PS) sequence for J and since J satisfies the (PS) condition the
result follows. The proof is complete.

Proof of Theorem 3.1. Define

d′i = inf
A∈Σ′i

sup
~u∈A

J(~u),

where
Σ′i = {A | A ⊂ N , gen(A) ≥ i}, i = 1, 2, · · · .

Now standard arguments (see, for example, [25]) can be used to obtain the conclu-
sion. The proof is complete.
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4 Further remarks

a). In [19] for a 2-system a multiplicity result was given for the attractive case.
More precisely, it was shown that for any k integer there is βk > 0 such that for
β := β12 > βk the 2-system has at least k nontrivial bound state solutions. It is not
clear how to extend that result to a general N -system. Our Theorem 2.1 asserts the
existence of one such solution with large coupling constants. The idea described in
section 2 provides also an alternative proof for the result on multiple bound states
for the 2-system in [19]. As in [19], rewriting µi = βii and β = β12, we reformulate
the 2-system as





−∆u + λ1u = µ1u
3 + βv2u, in Rn,

−∆v + λ2v = µ2v
3 + βu2v, in Rn,

u(x) → 0, v(x) → 0, as |x| → ∞.

(4.1)

The following theorem was first proved in [19] by comparing Morse indices of solu-
tions obtained via a Ljusternik-Schnirelman minimax procedure with Morse indices
of semitrivial solutions. We now give a different proof.

Theorem 4.1 ([19]). Let n = 2, 3 and for i = 1, 2 let λi and µi be fixed positive
constants. Then for any k ∈ N, there exists βk > 0 such that for β > βk the system
(4.1) has at least k pairs of nontrivial spherically symmetric solutions.

Proof. Using the symbols and estimates from the proof of Theorem 2.1, we have

m(2, 1) ≥ cλ
1−n

4
2√
µ2

, m(2, 2) ≥ cλ
1−n

4
1√
µ1

.

For any k ∈ N, define

ck := inf
Hk⊂E, dim Hk=k

max
u∈Hk, u 6=0

∫
Rn |∇u|2 + u2

(
∫
Rn u4)1/2

.

For any ε > 0, there exists a k-dimensional subspace Hk ⊂ E such that

max
u∈Hk, u 6=0

∫
Rn |∇u|2 + u2

(
∫
Rn u4)1/2

< ck + ε.

Denote
λ̄ =

λ1 + λ2

2
, Ĥk = {u(

√
λ̄ ·) | u ∈ Hk}.

It is then easy to see that

max
u∈Ĥk, u 6=0

∫
Rn |∇u|2 + λ̄u2

(
∫
Rn u4)1/2

< λ̄1−n
4 (ck + ε).

Set
Gk = {(u, u) | u ∈ Ĥk}.
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Then Gk is a k-dimensional subspace of E2 and

max
~u∈Gk, ~u 6=0

I(~u) =
2√

µ1 + µ2 + 2β
max

u∈Ĥk, u6=0

∫
Rn |∇u|2 + λ̄u2

(
∫
Rn u4)1/2

<
2λ̄1−n

4 (ck + ε)√
µ1 + µ2 + 2β

.

Let βk be the positive number defined by

2ckλ̄1−n
4√

µ1 + µ2 + 2βk
= min

{
cλ

1−n
4

1√
µ1

,
cλ

1−n
4

2√
µ2

}
.

If β > βk then for ε > 0 small enough

2(ck + ε)λ̄1−n
4√

µ1 + µ2 + 2β
< min

{
cλ

1−n
4

1√
µ1

,
cλ

1−n
4

2√
µ2

}
.

Therefore, according to the discussion above, there is a k-dimensional subspace Gk

of E2 such that
max

~u∈Gk, ~u6=0
I(~u) < min{m(2, 1), m(2, 2)}.

This inequality together with standard arguments yields at least k pairs of nontrivial
spherically symmetric solutions of (4.1). The proof is complete.

b). When λ1 = · · · = λN and the matrix B = (βij) is in the form of the product
of a row-stochastic matrix and a diagonal matrix both with positives entries, special
type nontrivial solutions of (1.1) for attractive case can be constructed ([5, 26]). We
do not know whether these special type solutions are the ground states or not. For
2-systems a uniqueness result on positive solutions in the attractive case was given
recently in [31].

c). Our main results in both sections still hold when we replace the entire space
by a bounded domain in Rn.

d). We do not know whether the solutions given in Theorem 3.1 are positive
ones. We suspect that some of these solutions are nodal solutions.
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