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Abstract. We discuss the existence of positive solutions of perturbation to a class
of quasilinear elliptic equations on R.

1. Introduction. This Note is concerned with solutions of perturbations to the
following problem on the real line R{

−u′′ + u− k(u2)′′u = up,

u ∈ H1(R) u > 0,
(1)

where k ∈ R and p > 1. Consider{
−u′′ + (1 + εa(x))u− k (1 + εb(x)) (u2)′′u = (1 + εc(x))up,

u ∈ H1(R) u > 0,
(2)

where a, b, c are assumed to be real valued functions belonging to the class S,

S = {h(x) = h1(x) + h2(x) : h1 ∈ Lr(R) ∩ L∞(R),
for some r ∈ [1,∞), h2 ∈ L∞(R), lim

|x|→∞
h2(x) = 0}.

Our main existence result is the following

Theorem 1.1. There is k0 > 0 such that for k > −k0 and a, b, c ∈ S, equation (2)
has a solution provided |ε| is sufficiently small.

Solutions of (2) will be found as critical points of a functional Iε of the form

Iε(u) = I0(u) + εG(u), u ∈ H1(R), (3)

where

I0(u) =
1
2

∫
R

(
|u′|2 + u2

)
dx + k

∫
R

u2|u′|2dx− 1
p + 1

∫
R
|u|p+1dx (4)

and G is the perturbation

G(u) =
1
2

∫
R

(
a(x)u2

)
dx + k

∫
R

b(x)u2|u′|2dx− 1
p + 1

∫
R

c(x)|u|p+1dx. (5)

Critical points of Iε will be found using the abstract perturbation procedure intro-
duced in [1, 2]. Due to the translation invariance, the critical points of I0 appear
as manifolds. We first show that I0 has a unique positive critical point z, up to
translations, which is nondegenerate, in the sense that I ′′0 (z) has a one dimensional
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56 QUASILINEAR ELLIPTIC EQUATIONS ON R

kernel (given by the translations). Then, for |ε| small, Iε will be shown to have a
critical point which is close to the critical manifold of I0.

We first consider the equation{
−u′′ + V (x)u− k(u2)′′u = λup,

u ∈ H1(R) u > 0.
(6)

When k = 0 and λ > 0 is fixed, solutions of (6) are nothing but the standing
waves of the corresponding nonlinear Schrödinger equation, whose existence has
been widely investigated, see [8] and e.g. [3, 5].

Equation (6) with k > 0 arises in various fields of physics, like the theory of
superfluids or in dissipative quantum mechanics, see e.g. [9, 14, 15]. Equations
with more general dissipative term arise in plasma physics, fluid mechanics, in the
theory of Heisenberg ferromagnets, etc. For further physical motivations and a
more complete list of references dealing with applications, we refer to [10, 16] and
to their bibliography.

In [16] equation (6) has been studied. For k > 0, for several classes of poten-
tials V (x) and certain ranges of p > 1, ground state solutions were constructed as
minimizers of a constrained minimization problem, with λ being the Lagrange mul-
tiplier. An Orlicz space approach was used in [13] to obtain ground state solutions
for prescribed λ > 0. The concentration compactness principle was used in these
papers to overcome the lack of compactness.

The results stated in Theorem 1.1 are new. However, even if we take b ≡ c ≡ 0,
when (2) becomes (6) with V (x) = 1 + εa(x), the perturbative approach allows us
to construct solutions for a range of k, V and p not covered by [13, 16], including
cases when the ground state solution may not exist. In particular, it is worth
mentioning that we can handle some cases in which k is negative. See also Remark
(i) at the end of Section 3. We also give a different approach for obtaining ground
state solutions of (6) for prescribed λ > 0. The results we find are similar to those
of [13] but we use an approach which is technically simpler than that in [13].

In Section 2 we first study the ground state solutions. Then Section 3 is devoted
to proving Theorem 1.1.

2. Ground state solutions. We first deal with the problem{
−u′′ + V (x)u− k(u2)′′u = λup,

u ∈ H1(R) u > 0.

We will consider λ > 0 as a fixed parameter. Since in the following the arguments
are independent of such λ > 0, we will take λ ≡ 1 for simplicity of notation.

We assume always that

(V 0): infR V (x) > 0.

Let

X = {u ∈ H1(R) :
∫

R
V (x)u2dx < +∞}

endowed with norm

‖u‖2 =
∫

R

(
|u′|2 + V (x)u2

)
dx.
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The corresponding scalar product in X will be denoted by (·, ·). Then solutions of
(6) are positive critical points of

I(u) =
1
2
‖u‖2 + k|uu′|22 −

1
p + 1

|u|p+1
p+1,

where we use |u|q to denote the Lq(R) norm. Let

γ(u) := (I ′(u), u) = ‖u‖2 + 4k|uu′|22 − |u|p+1
p+1

and define the Nehari manifold by setting

M = {u ∈ X \ {0} : γ(u) = 0}.
In the next two lemmas we collect the main properties of M that we need in the
sequel.

Lemma 2.1. Let k > 0 and p ≥ 3. Then M 6= ∅. Moreover, for any u ∈ X \ {0}
with γ(u) < 0 there exists a unique θu ∈]0, 1[ such that θuu ∈ M .

Proof. Fix u ∈ X\{0}. One has γ(θu) = θ2g(θ), where g(θ) = ‖u‖2+4kθ2|uu′|22−
θp−1|u|p+1

p+1. Then g(0) = ‖u‖2 > 0 and, for θ > 0 one has

g′(θ) = 8kθ|uu′|22 − (p− 1)θp−2|u|p+1
p+1. (7)

Let us distinguish between the case p > 3 and p = 3. In the former, from (7) we
find that g′(θ) < 0, resp. > 0, for

θ > θ∗ :=

(
8k|uu′|22

(p− 1)|u|p+1
p+1

)1/(p−3)

, resp θ < θ∗,

and the lemma follows when p > 3.
Next, let us consider the case p = 3. Recalling that inf{

∫
R |φ

′|2dx : φ ∈
H1(R),

∫
R φ2dx = 1} = 0, we infer that for all ε > 0 there exists φε ∈ H1(R),

with
∫

R φ2
εdx = 1 such that

∫
R |(φε)′|2dx = ε. Taking u2

ε = φε we get:

|uεu
′
ε|22 =

∫
R

u2
ε|u′ε|2dx =

1
4

∫
R
|(u2

ε)
′|2dx =

1
4

∫
R
|φ′ε|2dx =

1
4
ε,

while |uε|44 = |φε|22 = 1. Corresponding to such uε, we find ( recall that p = 3):

g(θ) = ‖uε‖2 + αεθ
2, where αε := 4k|uεu

′
ε|22 − |uε|44 = kε− 1 .

Choosing ε < k we get that αε < 0 and the result follows.

Lemma 2.2. Let p ≥ 3. Then M is a manifold and (if M 6= ∅) one has:
(i): there exists ρ > 0 such that ‖u‖ ≥ ρ, ∀ u ∈ M .
(ii): If u∗ ∈ M is a constrained critical point of I on M , then I ′(u∗) = 0 and

u∗ is a solution of (6).
(iii): m := infu∈M I(u) ≥ const. > 0.

Proof. From γ(u) = 0 it follows that

4k|uu′|22 = |u|p+1
p+1 − ‖u‖2. (8)

Then for u ∈ M one has

(γ′(u), u) = 2‖u‖2 + 16k|uu′|22 − (p + 1)|u|p+1
p+1 = −2‖u‖2 + (3− p)|u|p+1

p+1 < 0. (9)

In particular, M is a manifold. Furthermore, (8) also yields

‖u‖2 = −4k|uu′|22 + |u|p+1
p+1 ≤ C‖u‖p+1 (u ∈ M),
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proving (i). In addition, for the u∗ in the lemma, there exists µ ∈ R such that
I ′(u∗) = µγ′(u∗). Taking the scalar product, one finds (I ′(u∗), u∗) = µ(γ′(u∗), u∗).
Since u∗ ∈ M then (I ′(u∗), u∗) = 0 while (γ′(u∗), u∗) < 0, according to (9). Thus
µ = 0, proving (ii).
Using again (8), we infer that

I|M (u) =
1
4
‖u‖2 +

(
1
4
− 1

p + 1

)
|u|p+1

p+1. (10)

Therefore, if p ≥ 3 and taking into account (i), we deduce that m ≥ const. > 0.

For future references let us recall the following lemma from [16].

Lemma 2.3. Let un ⇀ u in X and set vn = un − u. Then

lim inf |unu′n|22 ≥ lim inf |vnv′n|22 + |uu′|22 .

We are now in position to prove the existence of ground states for (6).

Theorem 2.4. Let (V 0) hold and suppose that either V satisfies
(V 1): lim|x|→∞ V (x) = +∞;

or is bounded and satisfies
(V 2): V is periodic in x;
(V 3): lim|x|→∞ V (x) exists and denoted by V such a limit, one has that V =

supR V (x).
Then for k > 0 and p ≥ 3, m is always achieved at some u ∈ M , which is a solution
of (6).

Remarks. (i) When V satisfies (V 0), (V 3) and is of the form V (x) = 1 + εa(x)
we could also apply Theorem 1.1, with b(x) ≡ c(x) ≡ 0. However, let us point out
that (V 3) implies that εa(x) < 0. On the contrary, no such restriction is required
in Theorem 1.1 where, in addition, we allow k to be negative and p > 1.

(ii) There are cases not covered by Theorem 2.4 in which M is not empty and
I|M is bounded below. For example, if k < 0 and 1 < p < 3 one has that g(θu) =

θ2
(
‖u‖2 + 4k|uu′|22θ2 − |u|p+1

p+1θ
p−1
)

and this implies that ∀u ∈ X \ {0}, ∃ θu such
that θuu ∈ M . Moreover,

I(u) =
p− 1

2(p + 1)
‖u‖2 + k

p− 3
p + 1

|uu′|22 > 0, ∀u ∈ M.

Although we do not know in the present generality if the infM I(u) is achieved, we
will show later on that a ground state exists provided k > −k0, p > 1, V (x) =
1 + εa(x), a ∈ S and εa(x) < 0, see the Remark at the end of Section 3.

(iii) The proof below will make it clear that assumption (V 1) can be replaced
by any other condition that assures the compact embedding from X into Lp+1(R).

Proof. Let un ∈ M be a minimizing sequence. Clearly un is bounded and we
can assume that un ⇀ u in X. First, some preliminary remarks are in order. Since
un ∈ M , then |un|p+1

p+1 = ‖un‖2 +4k|unu′n|22 ≥ ‖un‖2 and therefore (i) of lemma 2.1
yields

lim |un|p+1
p+1 > 0. (11)
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Furthermore, setting as in the preceding Lemma vn = un − u, we claim that

γ(u) + lim inf γ(vn) ≤ 0, (12)

so that either γ(u) ≤ 0 or lim inf γ(vn) ≤ 0 (or both). To prove (12) we argue as
follows. Since un ∈ M , then 0 = γ(un) = ‖un‖2 + 4k|unu′n|22 − |un|p+1

p+1. By a well
known result by Brezis and Lieb [7],

|un|p+1
p+1 = |vn|p+1

p+1 + |u|p+1
p+1 + o(1).

Also, ‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1). Using these equations as well as Lemma 2.3 we
infer:

0 = ‖un‖2 + 4k|unu′n|22 − |un|p+1
p+1

= ‖vn‖2 + ‖u‖2 + 4k|unu′n|22 − |vn|p+1
p+1 − |u|p+1

p+1 + o(1)

≥ lim inf γ(vn) + γ(u),

proving (12).
We now distinguish among the three assumptions made on V .

(a) If (V 1) holds then X is compacly embedded in Lp+1, see [6], and hence
un → u strongly in Lp+1 (up to a subsequence). From (11) it follows that u 6= 0.
Moreover, one has

γ(vn) = ‖vn‖2 + 4k|vnv′n|22 − |vn|p+1
p+1 ≥ ‖vn‖2 − |vn|p+1

p+1 = ‖vn‖2 + o(1).

If lim ‖vn‖2 6= 0 (otherwise we have done) it follows that lim inf γ(vn) > 0. Then
from (12) it follows that γ(u) < 0. So, u 6= 0 and Lemma 2.1 imply that there
exists θ = θu ∈]0, 1[ such that θu ∈ M . Since un is a minimizing sequence and
using (10), we deduce

m + o(1) = I(un) =
1
4
‖un‖2 +

p− 3
4(p + 1)

|un|p+1
p+1

≥ 1
4
‖u‖2 +

p− 3
4(p + 1)

|u|p+1
p+1 + o(1)

=
1
4

θ−2‖θu‖2 +
p− 3

4(p + 1)
θ−(p+1)|θu|p+1

p+1 + o(1).

Since 0 < θ < 1 it follows that

m >
1
4
‖θu‖2 +

p− 3
4(p + 1)

|θu|p+1
p+1 = I(θu),

a contradiction because θu ∈ M . Thus, vn → 0 strongly in X, u ∈ M and u is a
minimizer of I|M .

(b) Suppose that (V 2) holds. From (11) and by the Concentration Compactness
Principle [11], we infer that there exist r > 0 and yn ∈ R such that

lim inf
n→∞

∫ yn+r

yn−r

|un|p+1dx > 0. (13)

We may assume yn are integer multipliers of the period of V . Then the sequence
ũn(x) = un(x+ yn) is also a minimizing sequence because I(ũn) = I(un) in view of
the periodicity of V . Without loss of generality, assume that yn = 0 and hence (13)
implies that u 6= 0. If γ(u) = 0 it is easy to see that ‖un − u‖ → 0 and I(u) = m.
Otherwise suppose that γ(u) 6= 0. If γ(u) < 0 we argue as in the preceding point
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(a). It remains to consider the case in which, up to a subsequence, lim γ(vn) < 0.
Then, for n large, there exist θn = θvn

∈]0, 1[ such that θnvn ∈ M . Furthermore
one has that lim sup θn < 1, otherwise, along a subsequence, θn → 1 and hence
γ(vn) = γ(θnvn) + o(1) = o(1), a contradiction. As before, we find

m + o(1) = I(un) ≥ 1
4

θ−2
n ‖θnvn‖2 +

p− 3
4(p + 1)

θ−(p+1)
n |θnvn|p+1

p+1 + o(1).

Therefore one has again m > I(θnvn), for n large, a contradiction. (c) Suppose
that (V 3) holds. First consider

I(u) =
1
2

∫
R

(
|u′|2 + V u2

)
dx + k

∫
R

u2|u′|2dx− 1
p + 1

∫
R
|u|pdx.

By the result proved in point (b), I has a critical point u which is a minimizer of I

on M := {u ∈ H1(R) : (I
′
(u), u) = 0}. It is readily proved that u > 0 on R. Also,

we use the notation m, γ or θ for this problem, with obvious meaning. If V is not
constant (otherwise (b) applies), one easily gets γ(u) < γ(u) for all u. In particular,
γ(u) < γ(u) = 0. Then θ(u) ∈]0, 1[, and

m ≤ I(θ(u)u) < I(u) = m. (14)

Let us take again a minimizing sequence for I and let us show that u 6= 0. Otherwise,
from I(un)− I(un) =

∫
R(V (x)− V )u2

ndx and since lim|x|→∞ V (x) = V we get

lim I(un) = lim I(un) = m.

For the same reason, we also have 0 = γ(un) = γ(un) + o(1). Let θn be such that
θnun ∈ M . From γ(θnun) = 0 we infer for p > 3:

θ
2

n

(
θ

p−3

n |un|p+1
p+1 − 4k|unu′n|22

)
= ‖un‖2 + o(1).

Since ‖un‖ and |unu′n|2 are bounded and using (11) we deuce that θn is bounded.
The case p = 3 can be handled similarly. Then, using also the property of the
Nehari manifold that I(λu) ≤ I(u) for all u ∈ M and all λ > 0, we find

m ≤ I(θnun) = I(θnun) + o(1) ≤ I(un) + o(1) = m + o(1),

a contradiction with (14). This proves that u 6= 0. Now we proceed as before:
one has that m + o(1) = I(un) = I(vn) + I(u) + o(1) and since 0 = γ(un) ≥
γ(u)+ lim inf γ(vn), we get that either γ(u) ≤ 0 or lim inf γ(vn) ≤ 0, or both. Then
the arguments carried out above yield a contradiction, proving that ‖un − u‖ → 0,
u ∈ M and m is achieved there.

In any case, we have shown that u ∈ M is a minimizer for I|M provided that one
among (V 1), (V 2) or (V 3) holds. Using (ii) of Lemma 2.2 it follows that u solves
the equation in (6). It remains to show that u > 0 and this follows as in [16]. Since
|un| is also a minimizer, one infers that u ≥ 0. Note that the equation in (6) can
be written in the form

−(1 + 2ku2)u′′ =
(
−V (x) + 2k(u′)2 + |u|p−1

)
u. (15)

If u(x0) = 0 for some x0 ∈ R, then u′(x0) = 0 and by the uniqueness of the Cauchy
problem, (15) implies that u ≡ 0, a contradiction. This shows that u > 0 and
completes the proof.
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The autonomous problem. In the remaining part of this section, we consider
the autonomous problem (1). Setting v = u′, (1) is equivalent to the Hamiltonian
system on R2 {

u′ = v

v′ = (u− 2kv2u− |u|p−1u)(1 + 2ku2)−1.
(16)

The energy

E(u, v) = (1 + 2ku2)
v2

2
− u2

2
+
|u|p+1

p + 1
is constant along the trajectories of (16) and a standard phase plane analysis shows
that there exists k0 > 0 such that (0, 0) is a hyperbolic equilibrium provided k >
−k0 and p > 1. Moreover, for such k, p, the equation E(u, v) = 0 defines an isolated
orbit (z(x), z′(x)) homoclinic to (0, 0), with z(x) > 0 for all x ∈ R. By homoclinic
to (0, 0) we mean, as usual, that z(x) → 0 and z′(x) → 0 as |x| → ∞. In addition, z
is even in x and z, z′, z′′ all tend to zero exponentially as |x| → ∞. This z(x) is the
unique even positive solution of (1). Of course, all translations zξ(x) = z(x+ξ), ξ ∈
R, are also solutions of (1) and form a one dimensional manifold Z = {zξ : ξ ∈ R}.
By the uniqueness of the Cauchy problem, it is easy to see that the dimension of
Ker[I ′′0 (zξ)] equals the dimension of the tangent space to the homoclinic trajectory
(z(x), z′(x)) in R2. This means that dim(Ker[I ′′0 (zξ)]) = 1. Since, of course, the
tangent space at zξ to Z, Tzξ

Z, is a subset of Ker[I ′′0 (zξ)], by dimensionality one
infers that Z is nondegenerate in the sense that

Tzξ
Z = Ker[I ′′0 (zξ)], ∀ zξ ∈ Z. (ND)

In conclusion, we have shown:

Proposition 2.5. There exits k0 > 0 such that for all k > −k0 and all p > 1,
equation (1) has a one dimensional manifold Z of critical points such that (ND)
holds.

Remark. Let us explicitly point out that, for any k > −k0 there is ck > 0 such that
(1 + 2kz2(x)) ≥ ck for all x ∈ R.

3. Proof of theorem 1.1. Solutions of (2) will be found as critical points of the
functional Iε defined in (3). This will be done by means of the perturbation method
discussed in [1, 2], that we briefly recall for the reader convenience. For more details
we refer to the forementioned papers, as well as [4].

Here we merely take X = H1(R), with the standard norm

‖u‖2 =
∫

R

(
|u′|2 + u2

)
dx.

Moreover it is always understood that k > −k0. We look for critical points of Iε of
the form zξ + w, where zξ ∈ Z and w ∈ (Tzξ

Z)⊥, where Z has been introduced in
the last part of Section 2. Let Pξ denote the projection of X to (Tzξ

Z)⊥. We first
solve the auxiliary equation PξI

′
ε(zξ + w) = 0, namely

Pξ[I ′0(zξ + w) + εG′(zξ + w)] = 0. (17)

Since I ′0(zξ) = 0 one finds I ′0(zξ + w) = I ′′0 (zξ) + R(w), where R(w) = o(‖w‖) as
‖w‖ → 0. Then (17) is equivalent to PξI

′′
0 (zξ) + εPξG

′(zξ + w) + PξR(w) = 0. The
following Lemma holds
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Lemma 3.1. Let Lξ := PξI
′′
0 (zξ). There exists c > 0 such that for all ξ ∈ R

|(Lξw,w)| ≥ c‖w‖2, ∀ w ∈ (Tzξ
Z)⊥. (18)

Proof. It suffices to consider the linearized operator

I ′′0 (zξ) : v 7→ −
(
(1 + 2kz2

ξ )v′
)′

+
(
1− 4kzξz

′′
ξ − 2k(z′ξ)

2 − pzp−1
ξ

)
v,

and to remark that, according to the Sturmian theory, it has a sequence of simple
eigenvalue λi. The first one, λ1 is negative (this is due to the fact that zξ is a
mountain-pass critical point of I0); moreover, by the nondegeneracy condition (ND)
it follows that λ2 = 0 < λ3 < . . .. Finally it is easy to check that the inequalities
λ1 < 0 < λ3 are uniform with respect to ξ ∈ R.

From the preceding Lemma it follows that (17) can be written as

w = (−Lξ)−1[εPξG
′(zξ + w) + PξR(w)].

Since the right hand side is a contraction, one can see that, for |ε| is sufficiently
small, there exists ρ(ε), with ρ(ε) → 0 as |ε| → 0, such that (17) has a unique
solution wξ,ε of class C1 with respect to ξ satisfying

‖wξ,ε‖ ≤ ρ(ε). (19)

Once the auxiliary equation is solved, we consider the one dimensional functional

Φε(ξ) = Iε(zξ + wξ,ε).

According to the results of [1, 2],
(∗): if ξ0 ∈ R is such that Φ′ε(ξ0) = 0 then zξ0 + wξ0,ε is a critical point of Iε

and hence a solution of (2).
We shall show that

lim
|ξ|→∞

Φε(ξ) = const. (20)

and this will imply, in view of (∗), that (2) has a solution. Thus the rest of this
section is devoted to show that (20) holds. For simplicity, we consider b(x) = c(x) ≡
0, so that

G(u) =
1
2

∫
R

a(x)u2dx.

However, from the proof it will be clear that the result holds for non zero b, c, too.
The procedure we follow is similar to that used in [4], but the presence of the term
(u2)′′u requires different arguments here. In order to show that (20) holds we shall
prove that

Proposition 3.2. For all |ε| small, lim|ξ|→∞ ‖wξ,ε‖ = 0.

The proof of this Proposition is postponed after several preliminary Lemmas. In
the sequel, for brevity, we will write wξ instead of wξ,ε. First, of all, since wξ is
uniformly bounded in ξ ∈ R, then wξ ⇀ w∞(= w∞,ε), along a sequence |ξn| → ∞.
Such a wξ satisfies the auxiliary equation (17). A direct computation yields

I ′′0 (zξ)[w] = −w′′ + w − 2kwzξ(zξ)′′ − 2kz2
ξw′′ − kw(z2

ξ )′′

−4kzξ(zξ)′w′ − pzp−1
ξ w,

G′(zξ + w) = a(x)(zξ + w),

R(w) = zp
ξ − (zξ + w)p − k

[
(w2)′′(zξ + w) + 2(zξw)′′w

]
+ pzp−1

ξ w.
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Therefore, applying the projection Pξ we find there exists αξ ∈ R such that wξ

satisfies the following differential equation
−w′′ξ + wξ − 2kwξzξ(zξ)′′ − 2kz2

ξ (wξ)′′ − kwξ(z2
ξ )′′

−4kzξ(zξ)′w′ξ + εa(x)(zξ + wξ) + zp
ξ

−(zξ + wξ)p − k
[
(w2

ξ)′′(zξ + wξ) + 2(zξwξ)′′wξ

]
+ αξz

′
ξ = 0.

(21)

Here we have used the fact that Tzξ
Z is spanned by z′ξ. Multiplying (21) by w∞,

integrating on R and taking into account that w∞ ⊥ Tzξ
Z, we get

∫
R(w′ξw

′
∞ + wξw∞)dx + k

∫
R(w2

ξ)′(wξw∞)′dx

+ε
∫

R a(x)(zξ + wξ)w∞dx +
∫

R

(
zp
ξ − (zξ + wξ)p)

)
w∞dx

−
∫

R `ξw∞dx = 0,

(22)

where

`ξ = 2kwξzξ(zξ)′′+2kz2
ξ (wξ)′′+kwξ(z2

ξ )′′+4kzξ(zξ)′(wξ)′+k(w2
ξ)′′zξ+2k(zξwξ)′′wξ.

We need to estimate the above integrals. This will be done in the next three lemmas.

Lemma 3.3.
(i): lim|ξ|→∞

∫
R(w′ξw

′
∞ + wξw∞)dx = ‖w∞‖2;

(ii):
∫

R(w2
ξ)′(wξw∞)′dx =

∫
R |(w

2
∞)′|2dx + 2

∫
R |(wξ − w∞)′|2w2

∞dx + o(1), as
|ξ| → ∞.

Proof. (i) follows immediately, because lim
∫

R(w′ξw
′
∞+wξw∞)dx = (wξ, w∞) →

‖w∞‖2.
To prove (ii) we recall that wξw∞ ⇀ w2

∞ in X as |ξ| → ∞ yielding:


∫

R(w2
ξ)′(wξw∞)′dx =

∫
R(w2

ξ − w2
∞ + w2

∞)′(wξw∞)′dx

=
∫

R [(wξ − w∞)′(wξ + w∞) + (wξ − w∞)(wξ + w∞)′] (wξw∞)′dx

+
∫

R |(w
2
∞)′|2dx + o(1).

(23)

Moreover∫
R
(wξ − w∞)′(wξ + w∞)(wξw∞)′dx =∫

R
[(wξ − w∞)′(wξ − w∞)(wξw∞)′ + 2w∞(wξ − w∞)′(wξw∞)′] dx.

But ∣∣∣∣∫
R
(wξ − w∞)′(wξ − w∞)(wξw∞)′dx

∣∣∣∣ =
=

∣∣∣∣∣
∫
|x|<R

(wξ − w∞)′(wξ − w∞)(wξw∞)′dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
|x|>R

(wξ − w∞)′(wξ − w∞)(wξw∞)′dx

∣∣∣∣∣
≤ C‖wξ − w∞‖L∞(−R,R) + C

∫
|x|>R

w2
∞dx + C

∫
|x|>R

(w′∞)2dx.
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Thus
lim

|ξ|→∞

∫
R
(wξ − w∞)′(wξ − w∞)(wξw∞)′dx = 0.

Furthermore∫
R

w∞(wξ − w∞)′(wξw∞)′dx =

=
∫

R
w∞(wξ − w∞)′((wξ − w∞)w∞)′dx +

∫
R

w∞(wξ − w∞)′(w2
∞)′dx

=
∫

R
|(wξ − w∞)′|2w2

∞dx +
∫

R
w∞(wξ − w∞)′(wξ − w∞)(w∞)′dx

=
∫

R
|(wξ − w∞)′|2w2

∞dx + o(1).

The last two equations imply

lim
|ξ|→∞

∫
R
(wξ − w∞)′(wξ + w∞)(wξw∞)′dx = 0. (24)

Similarly

lim
|ξ|→∞

∫
R
(wξ − w∞)(wξ + w∞)′(wξw∞)′dx = 0.

Substituting this and (24) into (23), (ii) follows.

Lemma 3.4.
(i):

∫
R

[
zp
ξ − (zξ + wξ)p)

]
w∞dx =

∫
R |w∞|

pdx + o(1), as |ξ| → ∞;

(ii): lim|ξ|→∞
∫

R a(x)zξw∞dx = 0

Proof. To prove (i) it suffices to remark that, obviously,
∫

R zp
ξ w∞dx = o(1) as

|ξ| → ∞ and that zξ + wξ ⇀ w∞ as well as (zξ + wξ)p ⇀ (w∞)p.
As for (ii), let a = a1 + a2 with a1 ∈ Lr(R) and a2 ∈ L∞(R) and set, for i = 1, 2

and R > 0, Ai(R) =
∫
|x|<R

|ai(x)zξw∞|dx and Bi(R) =
∫
|x|>R

|ai(x)zξw∞|dx. One
has (r′ denotes the conjugate exponent of r):

A1(R) ≤ max
|x|<R

|zξ(x)|

(∫
|x|<R

|a1(x)|rdx

)1/r (∫
|x|<R

|w∞(x)|r
′
dx

)1/r′

≤ C1 max
|x|<R

|zξ(x)|,

B1(R) ≤ C2

(∫
|x|>R

|a1(x)|rdx

)1/r (∫
|x|>R

|zξ(x)|r
′
dx

)1/r′

≤ C3

(∫
|x|>R

|zξ(x)|rdx

)1/r

.

Given η > 0, choose R > 0 such that B1(R) < η. Since max|x|<R |zξ(x)| → 0 as
|ξ| → ∞, we deduce that A1(R) + B1(R) ≤ η + o(1) as |ξ| → ∞. Moreover

A2(R) ≤ C4 max
|x|<R

|zξ(x)|, B2(R) ≤ C5

∫
|x|>R

|zξ(x)|dx

and, as before, one finds that A2(R) + B2(R) ≤ η + o(1) as |ξ| → ∞. Then (ii)
follows.
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Lemma 3.5. There results:

lim
|ξ|→∞

∫
R

`ξw∞dx = 0.

Proof. Note that every term of `ξw∞ contains zξ or z′ξ and also w∞ or w′∞. Then
we write each term on (−R,R) and on R \ (−R,R). In (−R,R) we use that zξ and
z′ξ are small for |ξ| → ∞; on R \ (−R,R) we use that

∫
|x|>R

w2
∞ and

∫
|x|>R

(w′∞)2

are small if R is large.

We are now in position to show

Lemma 3.6. For ε small enough, one has that wξ,ε ⇀ 0 in H1(R) as |ξ| → ∞.

Proof. We have to show that w∞ = 0. Using Lemmas 3.3, 3.4 and 3.5 and
passing to the limit in (22) as |ξ| → ∞ we get

‖w∞‖2 + ε

∫
R

a(x)w2
∞dx =

∫
R
|w∞|p+1dx− k

∫
R
|(w2

∞)′|2dx

−2k lim
∫

R
|(wξ − w∞)′|2w2

∞dx.

This implies, for some constants Ci > 0 independent of ξ and ε,

(1− εC1)‖w∞‖2 ≤ C2 ‖w∞‖p+1 + |k|C3 ‖w∞‖4 + 2|k|C4 ‖w∞‖2 lim ‖wξ − w∞‖2.

From (19), we have that ‖w∞‖ ≤ ρ(ε) and ‖wξ − w∞‖ ≤ ρ(ε) with ρ(ε) → 0 as
|ε| → 0. Then we may choose |ε| small such that the right hand side of the preceding
inequality is smaller or equal to ‖w∞‖2/2, while (1 − εC1) > 1/2 and this implies
w∞ = 0.

We are now in position to prove Proposition 3.2. Multiplying (21) by wξ and
integrating on R, we get

(Lξwξ, wξ) = ε
∫

R a(x)(zξ + wξ)wξdx

+
∫

R

[
(zξ + wξ)p − zp

ξ − p|zξ|p−1wξ

]
wξdx

+k
∫

R

[
(w2

ξ)′′zξ + (w2
ξ)′′wξ + 2(zξwξ)′′wξ

]
wξdx.

(25)

Since wξ → 0 in Lq

loc for any q ≥ 1 and a = a1 + a2 with a1 ∈ Lr and a2 ∈ L∞,
then

lim
|ξ|→∞

∫
|x|<R

a(x)w2
ξdx = 0, ∀ R > 0. (26)

Moreover, using that a2(x) → 0 as |x| → ∞, then for any δ > 0 we choose R > 0
such that |a2(x)| < δ for all |x| > R. Then we get∣∣∣∣∣

∫
|x|>R

a(x)w2
ξdx

∣∣∣∣∣ ≤ C1

∫
|x|>R

|a1(x)|rdx + C2 δ.

This and (26) imply

lim
|ξ|→∞

∫
R

a(x)w2
ξdx = 0.

Similarly,

lim
|ξ|→∞

∫
R

a(x)zξwξdx = 0.
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For the second term in (25) we find readily∣∣∣∣∫
R
[(zξ + wξ)p − zp

ξ − p|zξ|p−1wξ]wξdx

∣∣∣∣ ≤ C‖wξ‖p+1.

In the last part of (25) each term contains either three wξ and w′ξ or four of them.
Then ∣∣∣∣∫

R
[(w2

ξ)′′zξwξ + (w2
ξ)′′w2

ξ + 2(zξwξ)′′w2
ξ ]dx

∣∣∣∣ ≤ C(‖wξ‖3 + ‖wξ‖4).

Thus from (25) we get

C1‖wξ‖2 ≤ C2

(
‖wξ‖p+1 + ‖wξ‖3 + ‖wξ‖4

)
+ o(1).

Since ‖wξ‖ ≤ ρ(ε), and ρ(ε) → 0, we must have ‖wξ‖ → 0 as |ξ| → ∞. This
completes the proof of proposition 3.2.

We are now ready to show that (20) holds, namely that

lim
|ξ|→∞

Φε(ξ) = const.

Below, of course, we take |ε| small in such a way that all the preceding results hold
true. With easy calculation we find:

Φε(ξ) = I0(zξ + wξ) +
ε

2

∫
R

a(x)(zξ + wξ)2dx

= I0(z) + o(‖wξ‖) +
ε

2

∫
R

a(x)(zξ + wξ)2dx.

Here we have used that I0(zξ) ≡ I0(z). Arguing as before one has that
∫

R a(x)(zξ +
wξ)2dx → 0 as |ξ| → ∞. In addition, we know by Proposition 3.2 that ‖wξ‖ → 0
as |ξ| → ∞. Then we infer that lim|ξ|→∞ Φε(ξ) = I0(zξ) ≡ const, proving (20).
Since lim|ξ|→∞ Φε(ξ) = const, then Φε has at least a stationary point ξ0. Thus,
according to (∗), uε = zξ0 + wξ0,ε is a solution of (2).

Let us finally show that for any fix k > −k0, the solution uε is positive on
R, provided |ε| is small enough. Given R > 0 let ζR > 0 be the minimum of
zξ0(x) on the interval [−R,R]. Recalling that ‖wξ0,ε‖ ≤ ρ(ε), and ρ(ε) → 0, we
find εR > 0 such that uε(x) > ζR/2 > 0 for all x ∈ [−R,R]. By regularity,
uε ∈ C1 ∩ L∞ and uε(x) → 0 as |x| → ∞. Then we can choose R such that
|uε(x)|p−1 < 1/2 for all |x| > R and all |ε| < εR. Now, suppose by contradiction
that uε takes some negative values on |x| > R and let x1, |x1| > R, a point where
uε(x1) = min{uε(x) : |x| > R} < 0. We claim that, taking |ε| possibly smaller,

−(1 + 2ku2
ε(x1))u′′ε (x1) ≤ 0. (27)

This is trivial if k ≥ 0. When −k0 < k < 0 we use the fact that uε = zξ0 + wξ0,ε

and that ‖wξ0,ε‖L∞ → 0 as |ε| → 0. Using the Remark after Proposition 2.5, it
follows that (27) holds for k ∈]−k0, 0[, provided |ε| is sufficiently small. Next, from
(15), namely

−(1 + 2ku2)u′′ =
(
−(1 + εa(x)) + 2k(u′)2 + |u|p−1

)
u,

we infer that(
−(1 + εa(x1)) + |uε(x1)|p−1

)
uε(x1) = −(1 + 2ku2

ε(x1))u′′ε (x1) ≤ 0.
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On the other side, choose ε1 > 0 in such a way that (1 + εa(x)) > 1/2 for |ε| < ε1.
Then, taking |ε| < min{εR, ε1} we get that (1 + εa(x1)) > 1/2 > |uε(x1)|p−1 and
thus (

−(1 + εa(x1)) + |uε(x1)|p−1
)
uε(x1) > 0,

a contradiction, proving that uε > 0. This completes the proof of Theorem 1.1.

Remarks. (i) The results of [2] would imply that the solution found above is a
mountain-pass solution, provided εa(x) < 0, |ε| small. Therefore, for all k > −k0

and all p > 1 Theorem 1.1 yields, for |ε| small, the existence of a ground state when
εa(x) < 0. Let us point out that, setting V = 1 + εa(x) with a ∈ S, assumption
(V 3) in Theorem 2.4 holds whenever εa(x) < 0. Of course, unlike in Theorem 2.4,
here we deal only with perturbed potentials but cover a broader range of k and p.

(ii) According to [1, 2] one finds that

Φε(ξ) = I0(z) + εΓ(ξ) + o(|ε|),
where

Γ(ξ) =
1
2

∫
R

a(x + ξ)z2dx + k

∫
R

b(x + ξ)z2(z′)2dx− 1
p + 1

∫
R

c(x + ξ)zp+1dx.

As in [4] one can show that Γ(ξ) → 0 as |ξ| → ∞ provided a, b, c ∈ Lr ∩ L∞.
If Γ(ξ) 6≡ 0 then Γ has a maximum or minimum which gives rise to a positive
solution of (2). In general, we do not know if a, b, c 6≡ 0 implies that Γ(ξ) 6≡ 0
and this is the reason why we have carried out the preceding arguments leading
to show that Φε has a stationary point provided a, b, c ∈ S. However, in some
circumstances it is possible to work with Γ and this often permits to obtain sharper
results. For instance, conditions on a, b, c can be imposed so that one can even
obtain multiplicity results. We will shortly illustrate such a fact with a specific
example. Let us assume that a, b, c are smooth and even. By a stright calculation
one finds

Γ(0) =
1
2

∫
R

a(x)z2dx︸ ︷︷ ︸
A

+k

∫
R

b(x)z2(z′)2dx︸ ︷︷ ︸
B

− 1
p + 1

∫
R

c(x)zp+1dx︸ ︷︷ ︸
C

,

Γ′(0) =
1
2

∫
R

a′(x)z2dx + k

∫
R

b′(x)z2(z′)2dx− 1
p + 1

∫
R

c′(x)zp+1dx = 0,

Γ′′(0) =
1
2

∫
R

a′′(x)z2dx︸ ︷︷ ︸
A′′

+k

∫
R

b′′(x)z2(z′)2dx︸ ︷︷ ︸
B′′

− 1
p + 1

∫
R

c′′(x)zp+1dx︸ ︷︷ ︸
C′′

.

Therefore ξ = 0 is a stationary point of Γ and if, e.g. A + kB − C < 0 and
A′′ + kB′′ − C ′′ 6= 0, then ξ = 0 gives rise to a solution of (2). Furthermore, if
A′′+kB′′−C ′′ < 0 the function Γ achieves its global minimum at some ξ∗ 6= 0 and
such ξ∗ gives rise to a second solution of (2) u∗ε ' zξ∗ + wξ∗ , which is asymmetric
(namely not even). Let us point out that such u∗ε is the ground state of (2),
according to the discussion made in the item (i) above. For example, if B′′ > 0
and A′′ − C ′′ < 0, then the ground state of (2) is asymmetric provided k < k∗ =
(C ′′ −A′′)/B′′.

(iii) For semilinear case in higher space dimensions, perturbation type results
in Theorem 1.1 have been obtained, see e.g. [4]. The functionals (4) and (5)
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have natural analogues in higher space dimensions, but they are not smooth any
more. Though ground state solutions for (6) have been studied for higher space
dimensions in [12, 13] there are difficulties to generalize Theorem 1.1 to higher
dimensions, mainly in dealing with estimates involving the quasilinear terms.
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