
COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 20(9&10), 1725-1741 (1995) 

..... :.
 

:: '~..:
 
-.' "',." .';.:::;-:.;.' -- ~. -._,. ,-, ':"'~::.:/:~<;"~._.'" . -.... -.. _-. 

H~i;0J/J#.lM~~}~~iiJ.~;;~~~k:5:\~{<~~-;:·L;~~;lji!cb:j;~ 
. . .. :~:'I 

. ,'·:i 

EXISTENCE AND MULTIPLICITY
 
RESULTS FOR SOIVIE SUPERLINEAR
 

ELLIPTIC PROBLEMS ON RN
 

.,
Thomas Bartsch 

Mathematisches Institut
 

Universitiit Heidelberg
 

1m Neuenheimer Feld 288
 

69120 Heidelberg, Germany
.... -.-.. "; ..,: ­

Zhi-Qiang Wangl 

Department of Mathematics and Statistics
 

Utah State University
 

Logan, UT 84322
 

Abstract 

We study the semilinear elliptic PDE -Llu + b(x)u = f(x,1I) in 
RN . The nonlinearity f will be superlinear and subcritical. We prove 
the existence of a positive solution under various hypotheses on b. If 
b(x) = Aa(x) +1 and f is odd in u, then we also discuss the dependence 
of the number of (possibly sign changing) solutions on the parameter A. 
We do not assume that b or f have a limit for Ixl -t 00. 
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1726 BARTSCH AND WANG 

1 Introduction 

In this paper we study the semilinear elliptic partial differential equation 

-/':i.u + b(x)u = f(x,u) (1.1 ) 

Our interest in this equation results from Rabinowitz' paper [R2] who in turn 
was motivated by the work of Floer and Weinstein [FW] and of Oh [Ohl-3] 
on nonlinear Schrodinger equations. They were interested in finding standing 
wave solutions which leads to the study of (1.1). Similarly, the search for ·'-':~ >~~' . 
standing (or traveling) waves in nonlinear equations 'of Klein-Gordon type 
leads to the study of (1.1). Equation (1.1) appears also in other contexts, for 
example when one studies reaction-diffusiop equations. Then solutions of (1.1) 
correspond to steady states of the system. 

Many papers deal with the autonomous case where band f are independent 
of x, or with the radially symmetric case where band f depend on Ix I. Then it 
is natural to look for radially symmetric solutions first. If f grows subcritically 
then the functional 

¢(u) = ! f (I VuI2 + b(x)u2 
) dx - f F(x, u) dx 

2 JRN JRN 

associated to (1.1) satisfies the Palais-Smale condition if it is restricted to the 
class of radial functions in HI (RN). Therefore a variety of variational methods 
can be applied in order to obtain radial solutions. We refer the reader in partic­
ular to the work of Strauss [SI], Berestycki and Lions [BL] or Struwe [S2] (and 
the references cited there) who considered the autonomous, version of (1.1). 
In that case also ODE methods have been applied successfully, for instance 
by Jones, Kupper and Plakties [JKP] who used a shooting argument. The 
non-autonomous but radially symmetric case has been studied by Li [L2], for 
example, who is interested in radial solutions, and in [BWl,2], where both ra­
dial and nonradial solutions are found under various growth conditions mainly 
on f. 

'If the radial symmetry is lost then, in general, ¢ does not satisfy the 
Palais-Smale condition any more. This situation has been treated for instance 
by Ding and Ni [ON], Li [Ll] and Rabinowitz [R2], using variational methods 
like the mountain pass theorem. In these papers the existence of a positive 
solution is established under various growth conditions on b and f. The main 
problem in these papers is to circumvent the lack of compactness by either 
showing that the mountain pass value lies in a range where the Palais-Smale 
condit'ion holds, using comparison functionals, for instance; or by showing that 
a weak limit of a Palais-Smale sequence is in fact a non-trivial solution. 

In this paper we deal with (1.1) under similar assumptions as in [:R2]. We 
prove that ¢,does indeed satisfy the Palais-Smale condition even under weaker 
assumptions than those considered in §§1,2 of [R2]. This allows us to prove 
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the existence of infinitely many solutions of (1.1) if f is odc.l in tt. We a.lso 
treat (1.1) in a situation where the Palais·Smale condition does not hold but 
where b( x) = 'xa(x) + 1 depends on a parameter'x. Here we investigate the 
number of solutions of (1.1) as ,x increases. 

2 Statement of results 

As in [R2] we shall be mainly interested in criteria for the existence of multiple 
solutions of (1.1) depending essentially on the behavior of b at infinity. The 
nonlinearity f will be superlinear and subcritical. More precisely, throughout 
the paper we assume the following hypotheses for f. 

, 
(II) f E C(RN X R, R) satisfies f(x, u) '= o(lul) as u -t 0 uniformly in x. 

(12)	 There are constants al,a2 > 0 and S E (1, (N +2)j(N - 2)) for N 2: 3 
and S E (1,00) for N = 1,2 such that 

for every x ERN, U E R . 

(!J) There exists q > 2 such that for every x ERN, U E R \ {OJ 

0< qF(x,u) = q [f(x,v)dv:s uf(x,u). 

For b we shall first assume the following. 

(b l ) bE C(RN,R) satisfies bo := inf b(x) > O. 
xERN 

(b2 ) For every M> 0 

Jl({x ERN: b(x):S M}) < 00 

where Jl denotes Lebesgue measure in R N . 

Theorem 2.1. If (bl), (b2) and (f1)-(fJ) hold then there exist a positive and 
a negative (weak) solution of (1.1). Moreover, if in addition f is odd in u, that 
zs 

(J4) f(x, -u) = - f(x, u) for x ERN, U E R 

holds, then (1.1) has infinitely many solutions. These solutions aTe classical if 
f is locally Lipschitz continuous. 

-;-; "-----::.-"7---~·- ~_-.~::?:~.. 
~ .~<_•• '.' -';" 
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1728 BARTSCH AND WANG 

This result improves Theorem 1.7 of [R2] in two ways. First our hypotheses 
on both band f are weaker. In particular, it is not assumed that b(x) --> 00 

as Ixl -+ 00. Secondly, Rabinowitz does not obtain infinitely many solutions 
if f is odd in u. In [R2] the solutions are obtained as weak limits of certain 
Palais-Smale sequences of the energy functional 

U I-t ~ f (l\7uI 2 + b(x )u2
) dx - [ F(x, u) dx

2JRN JRN 

associated to (1.1). Our main observation is that under the assumptions of 
Theorem 2.1 the Palais-Smale condition is satisfied. Then the existence of a 
positive and a negative solution follows from the mountain pass theorem. The 
weak limits in [R2], 1.7, are in fact strong limits. This is essential in order to 
prove the existence of infinitely many solu.tions of (1.1) as in 2.1. 

In our next result we weaken hypothesis (b2 ) assuming on the other hand 
that band f are symmetric with respect to a subgroup of O(N) acting on 
x ERN. It is well known that such symmetries may simplify the problem 
considerably. For instance, if band f depend only on Ixl then one can look 
for radial solutions of (1.1). In that case ¢ satisfies the Palais-Smale condition 
on the space of radial functions. Hypothesis (b2 ) is not needed at all. Using 
a result of P.L. Lions, in [BW1] Bartsch and Willem observed that a weaker 
symmetry suffices. In the following theorem we allow still weaker symmetries 
(see also [BCS] in the case of a critical exponent problem). 

Theorem 2.2. Let G be a subgroup of O(N) such that each orbit Gx = {gx : 
9 E G}, X E R N \ {OJ, has infinitely many elements. Suppose band fare 
invariant under G: b(gx) = b(x) and f(gx, u) = f(x, u) for 9 E G, x ERN, 
U E R. Then (1.1) has a positive and a negative solution provided (hI) and 
(h)-(h) hold. It has infinitely many solutions if in addition (/4) holds. 

In fact, in §3 we shall prove a variation of the theorems 2.1, 2.2 where we 
combine a weakened version of (b2 ) with a weakened symmetry condition. 

Finally we consider a situation where neither (b 2 ) nor a symmetry condition 
is satisfied. The linear term b(x)u depends in an explicit way on a parameter A 
and we are interested in the number of solutions of (1.1) as A increases. More 
precisely we study 

(2.3)-6.u + (Aa(x) + l)u = f(x, u) 

Thus we replace b(x) by b~(x) = >.a(x) + 1. The following assumptions are 
required for a. 

(at) a E C(RN , R) satisfies a 2: 0 and a-I(O) has nonempty interior. 

(a2) There exists Mo > 0 such that 

JL({x E R N 
: a(x):::; Mo}) < 00. 

I 
I 
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Theorem 2.4. Suppose (al), (a2) and (h)-(h) hold. Then thel'e exists Al > 0 
such that (2.3) has a positive and a negative solution for each A > AI' If in 
addition (f4) holds then for each kEN there exists Ak > 0 such that (2_ 3) has 
at least k pairs ±Ul, ... , ±Uk of nontrivial solutions for A ~ Ak. 

Remark 2.5. a) Clearly (ad implies (bd with bo = inf b),(x) normalized 
xERN 

to 1. We do not know whether one can get rid of the additional hypothesis 
that the set a-I(O) = bA'l(l) has nonempty interior. On the other hand, (a2) 
is weaker than (b2). From (b2 ) it follows that for every M > 0 

..... ..<7):)l}i:~>;;<1 
A~~/t({x E R N 

: Ixl ~ R,b(x)::::: M}) = O. (2.6 ) 

!ttF~~~~~#i.~~~~~~~r~~ (a2) implies that b), satisfies (2.6) for sorp.e M), > O. The important point is 
that M), --t = as A--t 00. Observe that we do not assume that a), or f have 

"':<:":':, :<-:: :. j a limit for Ix I --t 00. 

b) One can replace b),( x) = Aa(x) +1 by more general functions. Essentially 
one needs that there is an open set 0 C R N with {b),(x) : A 2: O,x E O} 
bounded instead of (ad. And (a2) can be replaced by requiring that b), satisfies 
(2.6) for some M), with M), --t = as A--t 00. 

3 Proof of Theorem 2.1 

We shall first prove the existence of a positive sol ution of (1.1). To do this we 
replace f by 

if u ~ 0;f+ : R N x R --t R, f+(x, u) := {~(x, u) 
if u < O. 

As in [R2] one sees that a ilOntrivial solution of 

(3.1 )-tlu+b(x)u = f+(x,v,) 
..-----_._-.- .:',' -,' - -[ 

must be positive, hence a solution of (1.1). It is well known that solutions of 
(3.1) are precisely the critical points of the functional~*~%.%/A~~.4;~,~,,;*4'*~\"\"~:",o'·~'~1· 

, " .... ',.. -'. , .. -- .... :....-~. '- . -. .. ­

r.-·· 

.:So;:;' I, 
,:-._:.:-:-, '.:' 

where F+ is the primitive of f+. This functional is defined on the space
i 

E:= {u E W I ,2(RN ,R): JRN (IVuI 2 + b(x)u2)dx < =} 

,with the norm 
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1730 BARTSCH AND WANG 

By (b l ) the embedding E ~ W 1,2(RN ,R) is continuous. Moreover, because 
of Ud, (12) we have ¢J E CI(E, R). We shall apply the mountain pass theorem 
of [ARJ in order to obtain a positive critic,al value. Clearly, Ud implies 

, 

hence, 0 is a. local minimum of ¢J. Using (h) one sees easily that ¢J(tu) -> -CX) 

as t -> CX) for every u E E \ {O}. Setting 
.._....._" __:"~_ .. ',_: .':'~:::-:-:·'~~'~.>':;:"O .."_ ... ,:t':~.:.-_~..:~:_: .•<~_ ... : _:':.' _ 
" .. -:-', '~~':-;-::7'~ ~ •.:_~~~~~~ ,0.:'::-'::'.: ;.."J- ~_.':' ..:..:: ~;,.;",~ -::_,- .•;!'-.-. :,:,~'<:H,~ :'~ ~:' .~~ • r:= b: [O,IJ -> E: }(O) = 0, }(1) E E \ {O}, ¢J(iJ(I)) ~ 0 for all t 2: I} 

- .'. !~. ':'-;.~ :"0: ::': :~:-;;':".~,~ ~.: ; ";':~':-'--:';'~;:';~~:.~~f::~:~':-;~:,;~,:::.:: 

c:= inf max ¢J(}(t)),
-rEf099~>.~~~~ 

and 

.• 
we only have to prove the Palais-Smale condition in order to obtain a critical 

, I point of mounta.in pass type at the level c. 
Let (un) C E be a Palais-Smale sequence, that is, ¢J(un ) is bounded and 

¢J'(un) -> O. We c1airri that (Un) has a convergent subsequence. A standard 
argument yields that (Un) is bounded (see [R2J for instance). Thus after passing 
to a subsequence Un ~ Uo in E and Un -> Uo strongly in Lioc(RN

) for 2 ~ 
p < 2NI( N - 2). We first show that Un -> Uo strongly in L2(RN 

). For this 
it suffices to prove that an := IIUnllL2 -> IluollL2. Suppose an -> a along a 
subsequence, so a 2: Iluo//L" We claim that for every E: > 0 there exists R> 0 
such that 

uniformly in n (3.2) 

where BR = BR(O) = {x E R N : Ixl ~ R}. If (3.2) holds then Un -> Uo 

strongly in L2(RN) because UnlBR -> UOIBR in L 2(BR ), hence: 
" ..~.:,", "'1 Il tiollL2(RN) IluoIIL'(BR) + Il uol/L2(RN\BR) 

I > Jl~IIUnllL2(BR) 

> Jl~ lI unllL2(RN) - Jl~ Ilu nllL2(RN\BRl 

> a-e. 

It remains to prove (3.2). We fix E: > 0 and choose constants lvl > ~ sUPn Ilunl1 2 , 

p E (1, NI(N - 2)) and . 

I/unlli.pC > sup (3.3) 
- uEE\{O} Ifun l/ 2 

Let p' satisfy IJp + lip' = 1. Now (b2 ) implies that for R > 0 large enough 

~~tt;~~~i.~~;~:~:~~~j, 
, '::,..... <~.::'.:.'-::,". . '. ,:.:.:­

J.l({x ERN \ BR : b(x) < M}) ~ Cc .SU;n lIunl/2r (3.4) 

_..-..."~.' ~ ~ .-... -: : ~::'~::..:":':.~-::,,::-:,.::,:::-: 

--." 
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We set 
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A := {x ERN \ BR : b(x) :::: M} 

and 

Then by our choice of M 

Moreover, the Holder inequality, (3.3) and (3.4) imply 

~:is u~ dx < (is /U 12PdiB) IIp. (is 1 dX) IIp'n 

Ilunlli,p' p(B)l/p' 

< Cllun /1 2 • p(B)W 

S c/2. 

Therefore we obtain 

f u~ dx = f u~ dx + f u~ dx S c . 
JRN\BR JA Js 

Thus we have proved that Un -t Uo in £2(RN ). Now one can either use 
the Gagliardo-Nirenberg inequality or a result of P.L. Lions (see Lemma 4,3 
below) in order to see that Un -t Uo in LP(RN ) for 2 S p < 2N/(N - 2). 
With S E (l,(N + 2)/(N - 2)) (respecti\'ely s E (l,eXl) fOr N = 1,2) from 
assumption (h) and p := S + 1, one observes that the functional 'lj; belongs to 
Cl(U(RN ); R). Let i : E ~ LP(RN ) denote the inclusion and D : E --> E' 
the duality map. Then we know that i(un) --> i(uo) in U(RN

) and 

Un = D- l 
0 ¢/(un) + D- l 

0 'lj;' 0 i(un ) -70 + D- 1 
0 1/;' 0 i(uo) 

strongly in E. This proves the Palais-Smale condition, hence the existence of 
a positive solution Ul of (1.1) of mountain pass type. 

The existence of a negative solution U2 of mountain pass type follows anal­
ogously replacing 1+ by 

N if u :::: 0; 
f- : R x R -7 R, f-(x, u):= {Of(x, u) if u < O. 

The existence of infinitely many solutions, in fact of an unbounded sequence of 
critical points of </> if f is odd (so </> is even) is a consequence of the symmetric 
mountain pass theorem (see [Rl]) applied to the functional </> with f+ replaced 
by f . 
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Remark 3.5. From the proof of Theorem 2.1, we can see in fact we have 
proved that the imbedding from E to £2(RN ) is compact. By the Gagliardo­
Nirenberg inequality the imbedding from E to U(RN ) is also compact for 
2'::; p < ~'!.2' Under the coercivity condition, that is, b(x) -4 00 as IXI-4 00, 

similar compact imbedding results are due to Omana and Willem [OW] in the 
context of Hamiltonian systems (i.e. N = 1) and Costa [C] in the context of 
elliptic systems. Clearly the coercivity condition implies (b2 ). With the aid of 
this, infinitely many homoclinic solutions are obtained in [OW] if the system is 
odd. Theorem 2.1 can be considered as an improvement and generalization of 
the results in [OW] and [C]. We thank M. Willem and the referee for pointing 
out these references of which we were not aware. 

~. 

4 Proof of Theorem 2.2 

In this section we shall prove a result which generalizes the theorems 2.1 and 
2.2. In order to do this we combine a symmetry condition on band f with a 
version of (b2 ). More precisely, we assume the following symmetry condition. 

(S)	 band f are invariant under the action of a closed subgroup G of O(N),
 
that is, b(gx) = b(x) and f(gx,u) = f(x, u). Moreover,RN splits as
 
R N 2": V ffi W wilh G-invariant subspaces V and W = V L such that
 
for each v E V \ {OJ the orbit Gv = {gv : g E G} has infinitely many
 
elements.
 

Observe that we do not assume anything on the action of G on W. In partic­
ular, this action may be trivial. If (S) holds we can weaken (b2 ) as follows. 

(b3 ) For every M > 0 and every R> 0 

J1({x=v+WERN =V"ffi W : b(x).::;M,l v l'::;R})<oo. 

Theorem 4.1. If (5), (hI), (b3) and (fI)-(f3) hold then there exists a positive 
and a negative solution of (1.1). These solutions are G-invariant. 

Theorem 2.1 corresponds to the case V = 0, Theorem 2.2 to the case 
W=O. 

Proof We use the same notation as in .§3. Observe that G acts on E via· 

(gu)(x):= U(g-I X ) for gEG, uE E, x ERN. 

This action preserves t.he norm because of (S): 

\
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{ (lg(V'll)(g-l xW+ b(g-I X )U2(g-I X )) dx 
JRN 

{ (1V'(1l)(y)12 + b(y)u2(y)) dy 
JRN 

IIul1 2 

Also ¢ is G-invariant because f+ and its primitive F+ are G-invariant, hence 
D-l¢' : E -+ E is equivariant: D-I¢'(gu) = gD-1 ¢'(u). This implies D-1¢'(EG) C 

EGand D-1¢'(EGl.) C EGl.. HereEG := {u E E: gu = u for all 9 E G} con­
sists of the G-invariant functions u in E. Thus it suffices to find critical points 
of the restriction ¢o := ¢IEG

. We shall show that ¢o satisfies the Palais-Smale 
condition. The theorem follows then as in §3. 

Let (Un) C E G be a Palais-Smale s~quence. Then as in §3 it must be 
bounded and after passing to a subsequence Un ~ Uo in EG and Un -+ Uo in 
LfoARN 

) for 2 ~ p < 2N/(N - 2). Fixing any r > 0, we claim that 

sup 1 IU n - 11012 dx -+ 0 as n -+ 00. (4.2) 
xERN B.(x) 

Postponing the proof of (4.2) we show how (PS) follows. The following lemma 
is due to P.L. Lions ([L3], Lemma I.1). 

Lemma 4.3. If (vn ) is bounded in W 1,2(RN ) and if 

- ' .. ,';.." 

sup ( \vn l
2 dx -+ 0 as n -+ 00 

xERN JB.(x) 

then Vn -+ 0 in LP(RN) for any 2 ~ p < 2N/(N - 2). 

Thus (4.2) implies Un -+ Uo in LP(RN ) with p = s + 1. Then Un -+ UQ in 
E follows as in §3. 

It remains to prove (4.2). For R > r > 0 we define 

m(R, r):= min sup {n EN: there exists gl,'" ,9n E G 
Ivj=R,vEV 

such that BT (g;v) n BT (9jV) = 0 for all i =I- j} 

We first show that 

lim m(R, r) = 00. (4.4)
R-oo 

Clearly, m(R, r) = m(eR/r,e), so (4.4) follows from 

limm(l,e) = 00. (4.5)
<_0 

In order to prove (4.5) suppose to the contrary that there exist kEN and a 
sequence V n E V with Ivnl = 1 such that for each 91, ... ,9k E G there are i -:f j 
with BI/n(9;Vn)nBl/n(gjVn) =I- 0. For an accumulation point v of (vn) we would 

~?~~~i¥r:~::/#/i#:~~;~:~:~;~~~:
 
.... .i. 

\ 
\
 
\ 
\ 
\ 
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then have IGv I < k because otherwise there are gl, . .. ,gk E G and E > 0 with 
B.(giV) n B.(gjv) = 0 if i # j. Thus if n is large enough we have lin < c/2 , > 
and Vn E B./2 ( v), hence B1/n(giVn) n B1/n(gjVn) = 0, a contradiction. Now 
(4.5) and (4.4) follow since IGvl = 00 by (8).
 

Using (4.4) there exists RI > 0 such that for x = v + w with Ivl ::::: R1
 

r IU n - uol2 dx ~ IlunIl12/m(RIl r) ~ E 
JBr(x) 

uniformly in n: Using (b:3) one can show as in the proof of (3.2) that for R2 > 0
 
big enough and x = v + w with Ivl ~ RJ, Iwl ::::: R2
 

r IUn - uol 2 dx s: E 
JBr(x) 

uniformly in n. Using Un -t Uo in Lfoc(RN .)' we obtain (4.2) immediately. This
 
proves Theorem 4.1. 0
 

Condi tion (4.4) is a variation of a condition introduced by Willem [W]. 

Remark 4.6. Our argument also shows that the imbedding from EG to 
U(RN ) is compact. 

5 Proof of Theorem 2.4 

We consider the functional 

9.\(1/)= ~ r (l\7uI2+(Aa(x)+1)u2)dx- r F(x,u)dx
2 JRN JRN 

for u E E:= {u E W I,2(RN ,R): IIull2 < oo} where 

IluI1 2 := r (I Vu I2 +(a(x)+1)u2 )dx.JRN 
Then <P>. E CI (£, R) for every A ::::: O. By (tl) <P>. has a local minimum at 0 
and by (!J) 4>>.(tu) -t -00 as t -t 00 for u E E \ O. As in §3 we set 

f>. := h: [0,1] -t £: "Y(O) = 0, "Y(1) E E \ {O}, <p>.(h(1)) ~ 0 for all t ::::: 1} 
1.:-0and 

c>.:= inf max <P>.("Y(t)).
7Er,,099 

By Ekeland's variational principle or the quantitative deformation lemma (see 
[W)) there exist sequences (u~)n such that <p>.(u~) -t c>. and <p>.(u~) -t 0 as 
n -t 00. It follows easily that (u~)n is bounded in E, hence u~ ~ u~ in E and 
u~ -t u~ in Lloc(RN ) for 2 ~ p < 2N/(N - 2). And one may check that u~ 
is a (weak) solution of (2.3). The first part of Theorem 2.4 follows if we can 
show that u~ # 0 for A big enough. This is a consequence of the following two 
lemmas. We write UIA for the restriction of u E E to A C R N and IIull.+1 for 
the U+I-norm. 
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Lemma 5.1. There exists a > 0 such that 

1~r::0-f Ilu~II:1~ 2: a for every>. 2: O. 

Lemma 5.2. Fo!" every (3 > 0 there exist >., > 0 and R > 0 such that for 
>. 2: >., 

Ilu~IRN\BRII:1: < (3. 

From these lemmas we obtain with (3 := a/2 and >." R as in 5.2 

~-,provided>. 2: >'1' Thus u~ i- 0 for>' 2: >'1. It remains to prove the two lemmas. 
For simplicity we drop the superscript>' in the sequel and write Un for u~. 

Proof of Lemma 5.1. Since 

there exists f > 0 such that c;., 2: f for every>. 2: O. Next we observe that 

C.x 

(5.3) 

and consequently (for >'.2: 1) 

2qIIun l1 2 ::::; --c.x + 0(1) as n --> CXJ. (5.4)
q-2 

Now (II) and (h) imply that for every £ > 0 there exists A, such that 

~f(X, u)u - F(x, u) ::::; £112 + A<luI S +' 

for every x ERN, U E R. This yields, using (5.4) 

C.x lim (¢>;.,(u n) - ~¢>~(Un)Un) 
n-oo 2 

lim f (~f(x,un)Un-F(x,Un)) dx 
n-oo}RN 2 

< liminf f (£lun I2 +A,lun ls+')dx
n-+oo JRN 

< lim inf ( 2q£ c;., + A,llunll~t~) 
n-oo q - 2 

- ,"'\'. 



Setting EO:= (q 
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- 2)/4q we have 

~;~~~~~W4~~~~&iliJj;~~41 
o 

j 
Proof of Lemma 5.2. Let vEE \ {OJ have support in a-1(O). This exists 

;:~::-:.:-.< - .•-~:,: -.--. -'·/1 because of (ad. Then by definition of cA: 

CA < max <PA(tV)
t;::O 

max ( ~ f (lV'vI 2 +v2 )dx- l F(x,tv)dx)\ 
t;::O JRN RN 

-. c. .._r~~~ -2 

Next, for R > 0 we set 

',.;:::" A(R) := {x ERN: Ixl > R, a(x) 2: Mo} 

and 
B(R) :~ {x E R N 

: Ixl > R, a(x) < Mo}. 

.-.---.-.:.,,' -'-, -. ',' ,-. --·1 Then we have, using (5.3) 
I 
I 

j u~dx :s; AMI f (Aa(x)+1)u~dx 
A(R) 0+ I JRN

I 

< AMI . f (lV'un I2 + (>.a(x) + I)u~)dx 
0+1 JRNI 

I (2 .) 
I < AMo+1 q~2CA+O(1) 

. . .~: 

< I C+O(1)) (5.5)! (2q 
! Ufo + 1 q - 2I 

as n -+ 00. Moreover, using the Holder inequality and (5.4) we obtain for 
p E (1,N/(N - 2)) 

. /P, :.: ~ :-;. :.;. ~-s.':'::'":- _.-; _~.' -.•.• ' .. - ~-.- . '"'. -.. -;' -'-:.' :. .. ",: : . ~. - .-" -'~' ..-.~'-- f u 2 dx < (JRN lun l2P dxriP. (h(R) 1dXr ' 
JB(R) n 

'.:-:,- < C1 11un 11 2 • p.(B(R))l/p' 

.... ; ·1 .... ' ... ::.. 

-

< CI--'!:!LCA .p.(B(R))l/p' + 0(1)
q-2 

< C1 2q c. p.(B(R))llp' + 0(1) (5.6)
q-2 

.... ,::.... 

I 
" .: i 

':.',':".';" 
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as n --+ 00. Here CI = CI(N,p) is a positive constant. Setting () := N(s ­
1)/2(s + 1), the Gagliardo-Nirenberg inequality yields (C2 = C2(N, s) is a 
positive constant): 

I 11 8(5+1) . II I 11(1-8)(5+1)f lunl5 +1dx < C2II V'Un RN\BR 2 Un RN\BR 2
JRN\BR 

(1-8)(5+1)/2 
< C2I1 u nll e(5+1). f U2 dx + f U2 dx( JA(R) n JB(R) n ) 

Now observe that Ilunll is bounded independent of nand>. because of (5.4)
:~;:_;j::{:::¢;%~;~::r-I~~S;~\::~d':~;~~~~"--~,>;;2;;; ,,:~'>~';:-:,:1	 and CA :::; C. By (5.5) the first summand on the right can be made arbitrarily 

small if >. is large. Using (5.6) the second summand will be arbitrarily small if 
R is large because JL(B(R)) --+ 0 as R -+ 00 by (a2)' This proves Lemma 5.2.~~:~;~~~~~~~~~J~;~~#~11	 o .': ..•.. ' 

-~ I Now suppose that f is odd in the u-variable, so (h E CI(E; R) is even. 
Let n c int a-I(O) be;tn open bounded domain with smooth boundary andi 

I consider F:= w~'\n) as a subspace of E C W I ,2(RN). Observe that (h(u) = 
I rPo(u) is independent of>. for u E F. We look at the eigenvalue problems 

-~u + (a(x) + 1)u = fLU x E :R.N 
, 

with eigenfunctions ej E E, j EN, and 

-~u+ u = fLU xEn 

ulan = 0 

with eigenfunctions !J E FeE, j E N. We set Ek := span{eI, ... ,ed and 
Fk := span{JI,"" fd. Since rPA(tU) -+ -00 as t -+ <Xl for every u E E \ {OJ 
we see that (h satisfies the following property: 

(rPI) For each k ;::: 1 there exists Rk > 0 with rPA(U) :::; 0 for u E Fk, Ilull ;::: Rk. 
.. ~~. 

In fact, Rk is independent of>. because rPAIF = 4>oIF. Moreover, using (j2) a 
standard argument yields 

.....' .. _.'. 
, ,".7" :-" " ',' I' (rP2) fk := sup inf rPo(u) -+ <Xl as k --+ 00 .,:.;.:::?>'~'. '':::;'. ~~:.:>~ ~.:~:~~":--:".: ~::':~"..>.~ " -. ... :,:'. '~':'-' ..~:: -. ~"'~~" p>O uEEr-"lIull=p 

Now we define for kEN and>. ;::: 0~;~1~"f'8j1"""1'::"7,"f7~~!"t~	 Bk := {u E Fk : lIull:::; Rd, 
f k := {-y: B k -+ E: , is odd, continuous and ,(u) = u if Ilull = Rd 

and 
""I	 

C~:= inf maxrPA(T(U)).
"'fEr. uEB. 

These are almost critical values, that is, there exist sequences (u~,n)n with 
rP)..(u~,n) --+ c~ and rP~(u~,n) --+ 0 as n-+ 00. From this it follows that (u~,n)n 
is bounded in E, so u~n ~ u~ in E and u~n -+ ui in Lfoc(RN), 2 :::; p < 
2N/(N - 2).'	 ,

,.' 

>~./ 
.r:"~' . 
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Lemma 5.7. fk ~ c~ ~ Ck:= maBxcPo(u) for every A ~ 0, kEN. 
uE k 

Proof. The inequality c~ ~ Ck is trivial since cP"IF = cPo IF· In order to see 
.. l·~. 

i
• .• t 

~~~\~~~¥:4~~~~~~:~t;~~~~;~
 

c~ ~ fk we show that for every 7 E f k and every p E (0, Rk ) there exists 
u E Bk with 7(U) E ELI and II7(u)11 = p. Then c~ ~ fk follows from the 

; 
definition of Rk and fk in (cPd, (cP2) together with the fact cP>. ~ cPo for A ~ O. 

Given 7 and p as above we set 

0:= {u E Bk: 111(U)11 < p} 

which is an open neighborhood of 0 in Fk and satisfies 0 C int Bk because 
7(u) = u for u E 8Bk. Let Pk-l : E ~ Ek- l denote the orthogonal projection 
and set . 

h := Pk-l 07/0: • (5 --t Ek- l 
. . . I This is an odd continuous map. By Borsuk's theorem there exists u E 80 

I with h(u) = O. Clearly this implies 7(u) E Et_1 and 1h'(u)11 = p. 0! 
Lemma 5.8. There exists a sequence CXk -t 00 such that 

for every A ~ O. 

Proof. The proof of Lemma 5.1 applies with cx replaced by Uk := fk/2A.o' 

' ...~ 
Moreover, CXk --t 00 according to (/12). 0 

Lemma 5.9. There exists fA > 0 such that 

for every A ~ 1. 

Proof. As in the proof of (5.4) we see that for A ~ 1 

2q
Ilu~,nI12 ~ --2 c~ + 0(1) as n ~ 00. 

q-

Using the Sobolev inequality and Lemma 5.7 the result follows. o 

Next we choose a sequence ki ~ (X) such that CXk'+l > 4f3k' for each i E N. 
>.D • f'notatIOn we set Ii := CXk" C R Vi,n := uk"n'>. and Vi>. := Uk,rOr simp1"IClty 0 0i := I-'k" >. 

for the weak limit of the v~n' 

Lemma 5.10. For each mEN there exists Am > 0 such that 

for A ~ Am, i = 1, ... , m. 

Postponing the proof of Lemma 5.10 we first show how the existence of 
m nontrivial solutions ±v;, i = 1, ... , m follows if ). ~ Am. Namely, applying 
5.10 and 5.9 we obtain for). 2: Am, i = 1, ... , m 

7./2 ~ Ilv;lI:t~ ~ ~i ~ li+I/4 < 7i+I/2 ~ Ilv;HII:t:· 
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Thus the v(, i = 1, ... , m are different from °and have increasing Ls+l-norms, 
provided A 2: Am. 

It remains to prove Le~~a 5.io. As in the proof of (5.5) and (5.6) we see 
that for R > 0 

'/.,....,.':-- .. J 

",". ,., ......,..., .... 
......;..;..,.., ,.,,: : ".·.::::",1 

,. -~ •.~' :_- "--...'. . ",-: as n -+ 00. Again p E (1, N/(N -2)) and C1 = C1(N,p) is a positive constant. 
If we fix mEN then the right hand side can be made arbitrarily small for ~~,,!.;.~,;~~	 all k ::; km provided A and R are large en.ough. By the Gagliardo-Nirenberg 
inequality we obtain as in the proof of Lemma 5.2 

i ~ 15+l d < C II ~ 11 8(5+1). II ~ 1 11(1-8)(5+1)IU kn	 X _ 2 Ukn llkn RN\B 2 •
RN\BR ' . . R 

Since Ilu~ nil is bounded independent of k ::; km , n E N and A> 0 there exists 
Am > 0 a~d R m > 0 such that 

sf Iu~ nl +1 dx ::; Cik/2
JRN\B R ' 

for all k ::; km, n E N, A 2: Am, R 2: Rm. This implies for k = kl, ... ,km, 
A 2: Am, R 2: R m 

Ilv; IBR II:~: Ji.~ Ilv(nlBR II:~~ 
... - .. -..... 

> lim inf Ilv;nI15++: - lim sup Ilv;nIRN\B II:~~ 
n--+oo	 • S n--+oo RI 

> {i - ,;/2 = ,;/2. 

This proves Lemma 5.10,	 o 
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