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Abstract The paper is concerned with the local and global bifurcation structure of positive
solutions u, v ∈ H1

0 (�) of the system{−�u + u = µ1u3 + βv2u in �
−�v + v = µ2v

3 + βu2v in �

of nonlinear Schrödinger (or Gross-Pitaevskii) type equations in � ⊂ R
N , N ≤ 3. The

system arises in nonlinear optics and in the Hartree–Fock theory for a double condensate.
Local and global bifurcations in terms of the nonlinear coupling parameter β of the system
are investigated by using spectral analysis and by establishing a new Liouville type theorem
for nonlinear elliptic systems which provides a-priori bounds of solution branches. If the
domain is radial, possibly unbounded, then we also control the nodal structure of a certain
weighted difference of the components of the solutions along the bifurcating branches.
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346 T. Bartsch et al.

1 Introduction

In this paper we are concerned with the nonlinear elliptic system

⎧⎨
⎩

−�u + λ1u = µ1u3 + βv2u in �
−�v + λ2v = µ2v

3 + βu2v in �
u, v > 0 in �, u, v ∈ H1

0 (�)

(1.1)

on a possibly unbounded domain� ⊂ R
N , N ≤ 3. This system has found considerable inter-

est in recent years as it appears in a number of physical problems, for instance in nonlinear
optics. There the solution (u, v) denotes components of the beam in Kerr-like photorefrac-
tive media ([1]). With µ j > 0, j = 1, 2, we have self-focusing in both components of the
beam. The nonlinear coupling constant β is the interaction between the two components of
the beam. Problem (1.1) also arises in the Hartree–Fock theory for a double condensate, i.e.,
a binary mixture of Bose–Einstein condensates in two different hyperfine states ([15]). In
recent years many mathematical works on the existence and on qualitative properties of solu-
tions have appeared, revealing interesting features for the system which are quite different
from those of semilinear type Schrödinger equations. Following the work [20] by Lin and
Wei about the existence of ground state solutions with small couplings a number of papers
have been devoted to the existence theory of solutions in various different parameter regimes
of nonlinear couplings; see [2,3,5,6,23,24,35] for the existence of ground state or bound
state solutions, [21,22,26,30] for semiclassical states or singularly perturbed settings. In
[13,38,39] the authors have investigated the competition case β < 0, assuming λ1 = λ2 = 1
and µ1 = µ2 = 1, and established the existence of multiple positive solutions. We also want
to mention the paper [29] where the authors investigate the limit of solutions as β → −∞,
and the related work [10] on Lotka–Volterra type competition systems.

The current paper is mostly related to the papers [13,38,39]. We shall use a quite differ-
ent approach, namely bifurcation techniques. Our results are new and improve significantly
some of the results from [13,38,39] where λ1 = λ2 > 0 and µ1 = µ2 > 0 is being required.
When this condition holds the problem is invariant under the symmetry (u, v) �→ (v, u).
This invariance is essential to the method used in [13,38,39], namely Lusternik–Schnirelman
type arguments for symmetric functionals. Our methods using bifurcation techniques require
λ1 = λ2 > 0 in order to have a “trivial” branch of solutions. But our arguments do not
depend on the symmetry condition µ1 = µ2 so we can extend the existence results from
the papers mentioned above to a larger range of parameters. Moreover, we can show that the
solutions lie on continuous branches in terms of the nonlinear coupling parameter β, and that
these branches are bounded as long as β is bounded. These results are new even in the case
µ1 = µ2. The boundedness of the branch is a consequence of a new Liouville type theorem
for elliptic systems. We also show that a certain nodal property of a weighted difference of
the two components of the solutions is preserved along the solution branches.

We deal with the case λ1 = λ2 > 0 and may assume λ1 = λ2 = 1. Thus we consider

⎧⎨
⎩

−�u + u = µ1u3 + βv2u in �
−�v + v = µ2v

3 + βu2v in �
u, v > 0 in �, u, v ∈ H1

0 (�).

(1.2)

Fixing µ1, µ2 > 0 we may assume without loss of generality that µ1 ≤ µ2. In the case
N = 1, � is a bounded domain. If N = 2 or N = 3 the domains � ⊂ R

N we deal with are
bounded or radially symmetric (possibly unbounded).
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Liouville theorem, a-priori bounds, and bifurcating branches 347

If w ∈ H1
0 (�) is a solution of

−�w + w = w3, w > 0 in � (1.3)

then a direct calculation shows that for β ∈ (−√
µ1µ2, µ1) ∪ (µ2,∞) the pair

uβ =
(

µ2 − β

µ1µ2 − β2

)1/2

w, vβ =
(

µ1 − β

µ1µ2 − β2

)1/2

w

solves (1.2). If µ1 = µ2 =: µ this simplifies to

uβ = vβ =
(

1

|µ+ β|
)1/2

w

which is defined for β 	= −µ. Thus if µ1 < µ2 we have a “trivial” branch

Tw := {
(β, uβ, vβ) ∈ R × H1

0 (�)× H1
0 (�) : β ∈ (−√

µ1µ2, µ1) ∪ (µ2,∞)
}

of solutions of (1.2), and similarly for µ1 = µ2. We are interested in proving bifurcation
of nontrivial solutions from this branch. In doing this we considerably improve results due
to Dancer, Wei and Weth [13,39]. Our results give that there are infinitely many bifurcation
points along this trivial branch, that in case N = 1 or � radially symmetric, the bifur-
cating branches are global and unbounded to the left in the β-direction, and that solution
branches are prescribed by a nodal property of a weighted difference of the two components
u and v.

The paper is organized as follows. In Sect. 2 we state the main results of the paper about
local and global bifurcations. We also state a Liouville theorem which is used to establish
a-priori bounds of solution branches. This result may be of independent interest. In Sect. 3 we
determine all bifurcation points along Tw . Finally, in Sect. 4 we prove the Liouville theorem
and using this we investigate the global bifurcation branches.

2 Statement of results

Let E = H1
0 (�)when N = 1, or when� ⊂ R

N is a bounded domain. If N ≥ 2 and� ⊂ R
N

is unbounded we require that� is radially symmetric, i.e., the exterior of a ball or all of R
N .

In this case we set E = {u ∈ H1
0 (�) : u is radially symmetric}. In the case of a bounded

radial domain actually either choice of E is fine.
We fix a nondegenerate solution w ∈ E of (1.3) so that Tw ⊂ R × E × E . A parameter

value β is said to be a parameter of bifurcation from Tw , or simply a bifurcation parameter,
if there exists a sequence (β j , u j , v j ) ∈ R × E × E \ Tw of solutions of (1.2) such that
(β j , u j , v j ) → (β, uβ, vβ) as j → ∞. We call β a global bifurcation parameter if a con-
nected set of solutions of (1.2) bifurcates from Tw at (β, uβ, vβ) in the sense of Rabinowitz.
More precisely, setting

S := {(β, u, v) ∈ R × E × E \ Tw : (β, u, v) solves (1.2)}
then β is a global bifurcation parameter if the connected component Sβ of (β, uβ, vβ) in
S ∪ {(β, uβ, vβ)} is unbounded or Sβ ∩ Tw \ {(β, uβ, vβ)} 	= ∅.

The bifurcation parameters depend on the eigenvalues of

−�φ + φ = λw2φ. (2.1)
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348 T. Bartsch et al.

The eigenvalue problem (2.1) has a sequence of eigenvalues λ1 = 1 < λ2 < λ3 < . . . with
λk → ∞ and multiplicity nk = dim ker(−�+ 1 − λkw

2) where the kernel has to be taken
in E . In particular, in the radial setting we only consider radial eigenfunctions here. The first
eigenvalue λ1 = 1 is simple (n1 = 1) with eigenfunction w > 0. The condition that w is
non-degenerate means that λ = 3 is not an eigenvalue of (2.1), so λk 	= 3 for all k. Moreover,
ifw is a mountain pass solution of (1.3) then λ2 > 3. More generally, the Morse index m(w)
of w is given by

m(w) = n1 + · · · + nk0 with k0 = max{k ∈ N : λk < 3}. (2.2)

Our first result deals with the existence of bifurcation points.

Theorem 2.1 Assume w is a non-degenerate solution of (1.3). There exists a sequence

µ1 > β2 > β3 > · · · > βk0 > 0 > βk0+1 > βk0+2 > · · · > −√
µ1µ2

of bifurcation parameters of (1.2) such that βk → −√
µ1µ2 as k → ∞; here k0 is as

defined in (2.2). If the multiplicity nk of λk is odd then βk is a global bifurcation parameter.
If µ1 	= µ2 then there are no other bifurcation points along Tw except (βk, uβk , vβk ), k ≥ 2.
If µ1 = µ2 = µ then also (β1, uβ1 , vβ1) with β1 = µ is a bifurcation point.

Remark 2.2 (a) In the proof of Theorem 2.1 we explicitly determine the bifurcation param-
etersβk as a function ofλk . We also determine explicitly the kernel Vk of the linearization
of (1.2) with respect to (u, v) at the trivial solution (βk, uβk , vβk ). It turns out that its
dimension is the same as the multiplicity nk of λk as eigenvalue of (2.1). In fact, the rela-
tion between Vk and the k-th eigenspace will be made explicit (see (3.7)). In particular,
if N = 1 or � is radially symmetric and E = {u ∈ H1

0 (�) : u is radially symmetric}
then nk = 1 for all k ∈ N.

(b) If µ1 < µ2 then at the end point β1 = µ1, the trivial branch Tw intersects the solution
branch T1 = {(β,w1, 0) : β ∈ R} where w1 = µ

−1/2
1 w. So here we have the bifurca-

tion of semitrivial solutions of (1.2) from Tw . Looking at it differently, at (µ1, w1, 0)
the branch Tw bifurcates from the branch T1 of semitrivial solutions, and the bifurca-
tion points (βk, uβk , vβk ) are secondary bifurcation points. Theorem 2.1 also shows that
there is no secondary bifurcations on the other half of Tw with β ≥ µ2 which meets at
β = µ2 the solution branch T2 = {(β, 0, w2) : β ∈ R} where w2 = µ

−1/2
2 w.

(c) If µ1 = µ2 =: µ then at the point β1 = µ the bifurcating solutions are explicitly given
by

(
µ, uµ,θ , vµ,θ

) :=
(
µ,

cos θ√
2µ
w,

sin θ√
2µ
w

)
for 0 < θ <

π

2
.

For other values of θ one obtains non-positive solutions of the elliptic system. The
bifurcating set S+

1 := {(
µ, uµ,θ , vµ,θ

) : 0 < θ < π
4

}
connects Tw with T1, and the

bifurcating set S−
1 := {(

µ, uµ,θ , vµ,θ
) : π4 < θ < π

2

}
connects Tw with T2. By [6] at

the intersection S+
1 ∩ T1 = {(µ, uµ, 0)} we have bifurcation from a simple eigenvalue

in the sense of [11], so there are no further solutions of (1.2) near (µ, uµ, 0) except

those contained in S+
1 . The analogous statement holds near S−

1 ∩ T2.
(d) If λk is a simple eigenvalue of (2.1) then the bifurcating connected set Sk is in fact

a one-dimensional C1-curve in a neighborhood of (βk, uβk , vβk ). As stated in a) this
applies if N = 1 or in the radial setting.
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Liouville theorem, a-priori bounds, and bifurcating branches 349

(e) In the case µ1 = µ2 = 1 and � a bounded smooth domain, [13, Theorem 1.2] of
Dancer, Wei and Weth states the existence of β̃k such that (1.2) has at least k solu-
tions for −1 < β < β̃k and infinitely many solutions for β ≤ −1. It seems most
likely that this holds with β̃k = βk+1. (The index shift occurs because at β1 there is
no bifurcation to the left.) However, if the multiplicity nk is even then we just obtain
local bifurcation from (βk, uβk , vβk ). And if nk is odd we do not know whether the
bifurcating global connected branch Sk is unbounded in the β-direction. If so, then
as a consequence of [5, Theorem 1.5] the projection pr1 : R × E × E → R satis-
fies pr1(Sk) ⊂ (−∞, µ1), hence pr1(Sk) ⊃ (−∞, βk). Sk may however be bounded
in the β-component and unbounded in the (u, v)-component, or it may return to Tw.
Comparing Theorem 2.1 with [13, Theorem 1.2] suggests that there should exist infi-
nitely many global solution branches Sk bifurcating from Tw and satisfying pr1(Sk) ⊃
(−∞, βk).

(f) The first part of the result in Theorem 2.1 about local bifurcations holds also for
unbounded domains � without radial symmetry. This will be clear from the proof
as the Krasnoselski’s type bifurcation result is applied (see [18,32,33]).

We now turn to the two cases N = 1 or� is radial where we can prove a result as suggested
in Remark 2.2 e). It is well known that (1.3) has a unique positive (radial if N ≥ 2) least
energy solution w which is nondegenerate (in the class of radial functions if N ≥ 2) and of
mountain pass type; see e.g., [27,28,37,16] for the various domains. Consequently m(w) = 1
and βk ∈ (−√

µ1µ2, 0) for every k ≥ 2. Moreover, nk = 1 for every k ∈ N, so each βk

is a global bifurcation point. The next theorem contains some information about the global
bifurcating branch (Fig. 1). Recall that we set E = {u ∈ H1

0 (�) : u is radially symmetric}
in Theorem 2.3 if the domain is radial.

Theorem 2.3 Suppose N = 1 or � is radial and let w ∈ E be the unique positive (radial)
solution of (1.3). Then for each integer k ≥ 2 there exists a connected set Sk ⊂ S ⊂
R × E × E of solutions (β, u, v) of (1.2) such that Sk ∩ Tw = {(βk, uβk , vβk )}. The pro-
jection pr1 : Sk → R onto the parameter space satisfies pr1(Sk) ⊃ (−∞, βk). For any
(β, u, v) ∈ Sk the difference (µ1 −β)1/2u − (µ2 −β)1/2v has precisely k −1 simple zeroes.

Fig. 1 Schematic diagram of the bifurcation scenario if µ1 < µ2
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Thus in the one-dimensional or radial setting we recover and improve [13, Theorem 1.2]. If
µ1 = µ2 and β ≤ −1 the existence of radial solutions (β, u, v) such that u − v has precisely
k − 1 zeroes has been obtained by Wei and Weth in [39, Theorem 1.1] for k ≥ 2 using
variational methods which are based on the symmetry (u, v) �→ (v, u) of (1.2) in the case
µ1 = µ2. Theorem 2.3 improves their result considerably by, firstly, extending it to a larger
range of parameters µ1, µ2, β, in particular to the case without symmetry µ1 	= µ2, and,
secondly, obtaining the additional information that these solutions lie in fact on connected
branches.

Remark 2.4 (a) If � ⊂ R
2 is a ball or an annulus one can prove that there is global

bifurcation at a parameter value βk corresponding to an eigenvalue λk of (2.1), even
if λk has no radial eigenfunction, so that Theorem 2.3 does not apply. Since (1.2)
and (2.1) have an SO(2)-symmetry and are variational one can work with the
S1-orthogonal degree from [34]. One can also work with the Leray–Schauder degree
in a certain subspace E ⊂ H1

0 (�). For the latter approach one chooses m ∈ N max-
imal so that there is an eigenfunction of (2.1) of the form R(r) cos mθ ; here (r, θ)
are polar coordinates. Then one takes E to be the set of all functions that are even in
θ and invariant under rotations of 2π/m in θ . The bifurcating branches are global in
the sense stated above but we do not know whether they are unbounded or return to
Tw . Even if they are unbounded we do not know whether they are unbounded in the
β-direction.

(b) Equivariant degree theory can also be used for a bounded symmetric domain � ⊂
R

3. If � ⊂ R
3 is a ball or an annulus, (1.2) and (2.1) have an SO(3)-symmetry.

Here one can apply the orthogonal SO(3)-equivariant degree. More generally, if �
is symmetric with respect to a subgroup G ⊂ SO(3) the orthogonal G-equivariant
degree can be used to prove global bifurcation of non-radial solutions. Details are left
to the reader and we just refer to the recent monograph [4] on G-equivariant degree
theory.

The proof of Theorem 2.3 requires the proof of a-priori bounds for solutions (β, u, v) with a
bound on β and a bound on the number of nodal domains of (µ1 − β)1/2u − (µ2 − β)1/2v.

Theorem 2.5 Suppose N = 1 or � is radial. Then, given a compact set B ⊂ R and k ∈ N,
the set

{(β, u, v) ∈ R × E × E : (β, u, v) solves (1.2), β ∈ B, and

(µ1 − β)1/2u − (µ2 − β)1/2v has at most k zeroes}
is bounded.

These a-priori bounds are a consequence of a Liouville type theorem for solutions (u(r), v(r))
of the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− u′′ − N − 1

c + r
u′ = µ1u3 + βv2u in (−c,∞),

− v′′ − N − 1

c + r
v′ = µ2v

3 + βu2v in (−c,∞),

u, v ≥ 0

(2.3)

with c ∈ [0,∞] fixed. When c = ∞ we understand the terms with u′ and v′ disappear.
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Theorem 2.6 Let (u, v) be a solution of (2.3). Then (µ1 − β)1/2u − (µ2 − β)1/2v has
infinitely many zeroes.

In [13, Theorem 2.1] it has been proved that the system⎧⎨
⎩

−�u = µ1u3 + βv2u in R
N

−�v = µ2v
3 + βu2v in R

N

u, v ≥ 0 in R
N

(2.4)

has no classical solutions provided β > −√
µ1µ2. This is not true anymore if β ≤ −√

µ1µ2.
For radial solutions, (2.4) reduces to (2.3) with c = 0. Our Theorem 2.6 implies that, even
if β ≤ −√

µ1µ2, (2.4) does not have nontrivial radial solutions such that (µ1 − β)1/2u −
(µ2 − β)1/2v has only finitely many zeroes.

3 Proof of Theorem 2.1

We first determine explicitly all bifurcation parameters. In order to do this we consider the
function

f : (−√
µ1µ2, µ1) → (1,∞), f (β) = 3µ1µ2 − 2β(µ1 + µ2)+ β2

µ1µ2 − β2 .

It is straightforward to check that f is a strictly decreasing diffeomorphism mapping
(−√

µ1µ2, 0] to [3,∞) and [0, µ1) to (1, 3]. Recall the nondegenerate solution w > 0
of (1.3) and the eigenvalues λk of the eigenvalue problem (2.1).

Lemma 3.1 The only possible bifurcation parameters are βk := f −1(λk), k ≥ 2 (k ≥ 1 if
µ1 = µ2). The dimension of the kernel of the linearization of (1.2) with respect to (u, v) at
the trivial solution (βk, uβk , vβk ) is equal to the multiplicity nk of λk as eigenvalue of (2.1).

Proof Linearizing (1.2) at (β, uβ, vβ) yields the system{
−�φ + φ = 3µ1u2

βφ + βv2
βφ + 2βuβvβψ

−�ψ + ψ = 2βuβvβφ + 3µ2v
2
βψ + βu2

βψ
(3.1)

or equivalently {−�φ + φ = w2(aφ + bψ)

−�ψ + ψ = w2(bφ + cψ)
(3.2)

with

a = a(β) = 3µ1
µ2 − β

µ1µ2 − β2 + β
µ1 − β

µ1µ2 − β2 = 3µ1µ2 − 2µ1β − β2

µ1µ2 − β2 (3.3)

and

b = b(β) = 2β

√
(µ1 − β)(µ2 − β)

µ1µ2 − β2 (3.4)

and

c = c(β) = 3µ2
µ1 − β

µ1µ2 − β2 + β
µ2 − β

µ1µ2 − β2 = 3µ1µ2 − 2µ2β − β2

µ1µ2 − β2 . (3.5)
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Let γ± be the solutions of cγ − b = aγ − bγ 2, that is,

γ± = a − c

2b
± 1

2b

√
(a − c)2 + 4b2. (3.6)

If (φ, ψ) is a solution of (3.2) then a simple calculation shows that φ − γ±ψ solves

−�(φ − γ±ψ)+ (φ − γ±ψ) = (a − bγ±)w2(φ − γ±ψ),

and that a − bγ− = 3. Consequently, φ − γ−ψ solves

−�(φ − γ−ψ)+ (φ − γ−ψ) = 3w2(φ − γ−ψ).

Since w is a nondegenerate solution of (1.3) we obtain that φ = γ−ψ . Plugging this into
(3.2) it follows that ψ solves the equation

−�ψ + ψ = (bγ− + c)w2ψ.

Next one easily checks that bγ− + c = f (β). It follows that the linearization (3.1) has a
nontrivial kernel if, and only if, f (β) = λk for some k ∈ N. Moreover, in that case the kernel
is given by

Vk = {(γ−ψ,ψ) : ψ is an eigenfunction of (2.1) associated to λk}. (3.7)

The case f (β) = λ1 = 1 corresponds toβ = µ1. Ifµ1 < µ2 then we recall from Remark 2.2b
that Tw ∩ T1 = {(µ1, w1, 0)}, i.e. Tw bifurcates from T1 at that point. This is a bifurcation
from a simple eigenvalue, hence there can be no further bifurcation of solutions of (1.2),
where both components have to be positive, at that point. ��
It remains to show that βk is in fact a bifurcation parameter. By Remark 2.2c this is trivially
the case for µ1 = µ2 and β = β1. Therefore in the sequel we only need to consider the case
k ≥ 2. An important role plays the variational nature of the problem. Solutions of (1.2) are
critical points of the functional Jβ : E × E → R given by

Jβ(u, v) = 1

2

∫
�

(|∇u|2 + |∇v|2 + u2 + v2)− 1

4

∫
�

(µ1u4 + µ2v
4)− β

2

∫
�

u2v2.

It is standard to show that Jβ is of class C2. Observe that E embeds compactly into L4(�);
in the case of an unbounded radial domain this is a well known consequence of a lemma of
Strauss; see [36] or [40, Corollary 1.26]. It follows easily that ∇ Jβ is a compact perturbation
of idE×E and that Jβ satisfies the Palais–Smale condition. Let m(β) ∈ N0 be the Morse index
of (uβ, vβ) as critical point of Jβ .

Lemma 3.2 The change of Morse indices at βk , k ≥ 2, is given by:

ik := lim
ε↘0

(m(βk − ε)− m(βk + ε)) = nk .

The lemma also holds for µ1 = µ2 = µ at β1 = µ. We do not prove this here because
the proof is similar to the one we give below and because we do not need the result by
Remark 2.2c.

Proof Lemma 3.1 implies |ik | ≤ nk . In order to prove ik = nk we introduce some notation.
Let

〈(u1, v1), (u2, v2)〉 =
∫
�

(∇u1 · ∇u2 + u1u2 + ∇v1 · ∇v2 + v1v2)
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be the standard scalar product on E × E and let ‖ . ‖ be the associated norm. With respect to
this product we have

∇ Jβ(u, v) = (u, v)− (K (µ1u3 + βv2u), K (µ2v
3 + βu2v))

where K = (−�+ 1)−1. Now the Hessian Hβ : (E × E)2 → R of Jβ at (uβ, vβ), is given
by

Hβ [(φ, ψ)2] = ‖(φ, ψ)‖2 −
∫
�

(
a(β)w2φ2 + 2b(β)w2φψ + c(β)w2ψ2)

=
∫
�

(|∇φ|2 + φ2 + |∇ψ |2 + ψ2) −
∫
�

(
a(β)φ2 + 2b(β)φψ + c(β)ψ2)w2

(3.8)

with a, b, c as defined in (3.3)–(3.5). Let V ±
β denote the positive (resp. negative) eigenspace

associated to Hβ , and recall the kernel Vk of Hβk given in (3.7). For 0 < βk < µ1 the lemma
follows from the following two claims.

Claim 1 m(β) = m(w)+ 1 for β < µ1 and close to µ1.

Claim 2 m(0) = 2m(w)

Postponing the proofs of these claims we first deduce ik = nk in the range 0 < β < µ1.
By Lemma 3.1 m(β) can only change at β = βk and the change is at most nk . Moreover,
0 < βk < µ1 is equivalent to 1 < f (βk) = λk < 3, i.e. 2 ≤ k ≤ k0. From Claim 1 and
Claim 2 it follows that for β2 < β < µ1 we have

m(w)− 1 = m(0)− m(β) = i2 + · · · + ik0 ≤ n2 + · · · + nk0 = m(w)− 1

and hence, ik = nk for 2 ≤ k ≤ k0.

Proof of Claim 1 Let W − ⊂ E be the eigenspace of (2.1) associated to the eigenvalues
1 = λ1 < λ2 < · · · < λk0 < 3 and W + the eigenspace of (2.1) associated to the eigenvalues
3 < λk0+1 < λk0+2 < · · ·. Then we have∫

�

w2φ2 ≤
∫
�

(|∇φ|2 + φ2) ≤ λk0

∫
�

w2φ2 < 3
∫
�

w2φ2 for φ ∈ W − \ {0}, (3.9)

and ∫
�

(|∇φ|2 + φ2) ≥ λk0+1

∫
�

w2φ2 > 3
∫
�

w2φ2 for φ ∈ W + \ {0}. (3.10)

We claim that Hβ is negative definite on the space W − × Rw ⊂ E × E and positive definite
on the orthogonal complement W + × (Rw)⊥. Looking at (3.8) and using (3.9), (3.10), this
follows easily from a(β) → 3, b(β) → 0, and c(β) → 1 as β → µ1. ��
Proof of Claim 2 The claim follows in the same way using that a(0) = 3 = c(0) and b(0)
= 0. H0 is negative definite on W − × W − and positive definite on W + × W +. ��
For −√

µ1µ2 < βk < 0 the equality ik = nk = dim Vk follows immediately from the
following two claims.
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Claim 3 For β > βk and close to βk , Hβ is positive definite on V +
βk

⊕Vk and negative definite

on V −
βk

.

Claim 4 For β < βk and close to βk , Hβ is positive definite on V +
βk

and negative definite on

V −
βk

⊕ Vk.

Both claims follow from Hβ = Hβk + (β−βk)H ′
βk

+o(|β−βk |) for β → βk if we can show

that the derivative H ′
βk

= ∂
∂β

Hβ |β=βk is positive definite on the kernel Vk . The derivative is
simply given by

H ′
β [(φ, ψ)2] = −

∫
�

(
a′(β)φ2 + 2b′(β)φψ + c′(β)ψ2)w2.

Let (φ, ψ) = (γ−(βk)ψ,ψ) ∈ Vk \ {0} be an arbitrary nontrivial element of the kernel (see
(3.7)). So ψ ∈ E \ {0} is an eigenfunction of (2.1) associated to λk and

γ−(β) = a(β)− c(β)

2b(β)
− 1

2b(β)

√
(a(β)− c(β))2 + 4b2(β)

is as in (3.6). We have to show that

H ′
β [(γ−(β)ψ,ψ)2] = −

∫
�

(
a′(β)(γ−(β)ψ)2 + 2b′(β)γ−(β)ψ2 + c′(β)ψ2)w2

= − (
a′(β)γ 2−(β)+ 2b′(β)γ−(β)+ c′(β)

) ∫
�

w2ψ2

> 0

forβ = βk . Clearly γ−(β) < 0 for allβ so it is sufficient to prove that a′(βk) < 0, b′(βk) > 0,
and c′(βk) < 0. For a we have

a′(β) = −2µ1(µ1µ2 − 2βµ2 + β2)

(µ1µ2 − β2)2
< 0

provided −√
µ1µ2 < β < 0, which is the case for the βk’s which we consider here. For b

we get

b′(β) = 2µ2
1µ

2
2 − 4(µ1 + µ2)µ1µ2β + 4µ1µ2β

2 − 2(µ1 + µ2)β
3 + β4

(µ1µ2 − β2)2(µ1 − β)1/2(µ2 − β)1/2
> 0

for −√
µ1µ2 < β < 0. And finally, for c we have

c′(β) = −2µ2(µ1µ2 − 2βµ1 + β2)

(µ1µ2 − β2)2
< 0

provided −√
µ1µ2 < β < 0. ��

In order to prove Theorem 2.1 we shall apply classical bifurcation results going back to
Krasnoselski [18] and Rabinowitz [31]. However, we need to guarantee that the bifurcating
critical points of Jβ are in fact positive. In order to achieve this we modify the problem and
consider the functional J+

β : E × E → R defined by

123



Liouville theorem, a-priori bounds, and bifurcating branches 355

J+
β (u, v) = 1

2

∫
�

(|∇u|2 + |∇v|2 + u2 + v2)− 1

4

∫
�

(µ1u4+ + µ2v
4+)− β

2

∫
�

(u2+v2+)

= 1

2
‖(u, v)‖2 − 1

4

(
µ1|u+|44 + µ2|v+|44

) − β

2

∫
�

u2+v2+.

Here u+ and v+ are the positive parts of u and v, and | . |p denotes the L p-norm. It is standard
to prove that J+

β is of class C2−0 and satisfies the Palais-Smale condition. The Euler-Lagrange
equation associated to Jβ is a modification of (1.2):

⎧⎪⎪⎨
⎪⎪⎩

−�u + u = µ1u3+ + βv2+u+ in �

−�v + v = µ2v
3+ + βu2+v+ in �

u, v ∈ H1
0 (�),

(3.11)

This system has only nonnegative solutions as can be seen by multiplying the first equation
with u−, the second with v− and integrating. Consequently every solution of (3.11) is a
solution of (1.2). And every non-negative solution of (1.2) is also a solution of (3.11). This
applies in particular to the elements of Tw .

We need to recall the concept of critical groups (see e.g., [9,25]). For an isolated critical
point (u, v) of J+

β with J+
β (u, v) = c the critical groups are defined by

C∗(J+
β , (u, v)) := H∗((J+

β )
c, (J+

β )
c \ {(u, v)}).

Here H∗ denotes singular homology with coefficients in a field.

Lemma 3.3 For β ∈ (−√
µ1µ2, µ1) \ {βk : k ∈ N} (β > −µ if µ = µ1 = µ2) the crit-

ical groups of (uβ, vβ) are given by dim Ck(J
+
β , (uβ, vβ)) = δkm(β), and the local degree

by deg(∇ J+
β , (uβ, vβ)) = (−1)m(β). Here m(β) is the index of the quadratic form Hβ =

D2 Jβ(uβ, vβ) from (3.8).

Recall that due to the compact embedding of E into L4(�), the gradient of J+
β is a compact

perturbation of idE×E , so the Leray–Schauder degree can be applied. By Lemma 3.3 the
critical groups of (uβ, vβ) considered as critical point of Jβ or of J+

β are identical. The same

holds for the local degrees of ∇ Jβ or of ∇ J+
β at (uβ, vβ). The computation of the critical

groups and the local degree of (uβ, vβ) with J+
β replaced by Jβ is easy because ∇ Jβ is of

class C1. The argument for J+
β is a bit more complicated because ∇ J+

β is not differentiable,
not even at (uβ, vβ).

Proof Let V ±
β be the positive (resp. negative) eigenspace of Hβ . In particular, dim V −

β =
m(β) and V −

β + V +
β = E × E . Then there exist subspaces W ±

β ⊂ C∞
0 (�) with dim W −

β =
m(β), clos(W −

β + W +
β ) = E × E , and such that Hβ is negative definite on W −

β and pos-

itive definite on W +
β . Let wn ∈ W +

β be such that span{wn : n ∈ N} = W +
β and set

W n
β := W −

β + span{wk : k = 1 . . . , n}. Then J+
β coincides with Jβ in a neighborhood

U ⊂ (uβ, vβ) + W n
β of (uβ, vβ) in (uβ, vβ) + W n

β . Consequently, J+
β |U is of class C2

and has (uβ, vβ) as a nondegenerate critical point with Morse index m(β). Now [7, Theo-
rem I.5.10] yields dim Ck(J

+
β , (uβ, vβ)) = δkm(β). This in turn implies that the local degree

of ∇ J+
β at (uβ, vβ) is (−1)m(β); see [19, Theorem 3.2]. ��
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Proof of Theorem 2.1 By Lemma 3.2 and Lemma 3.3 the bifurcation theorem for variational
maps as formulated in [25, Theorem 8.9] applies and yields that eachβk is in fact a bifurcation
parameter for critical points of J+

β . The maximum principle implies that these critical points
must be strictly positive, hence they are solutions of (1.2).

If the multiplicity nk of λk is odd then the crossing number ik is not zero by Lemma 3.2
and the local degree of (uβ, vβ) as zero of ∇ J+

β changes. Then we can apply Rabinowitz’
global bifurcation theorem; see [31] and [17, Theorem II.3.3]. In fact, a straightforward mod-
ification of it yields a connected set Sk of critical points (β, u, v) of J+

β bifurcating from
(βk, uβk , vβk ), and Sk is either unbounded or returns to Tw . If one of the components u, v is
not strictly positive, then by the maximum principle this component would be 0. That means,
there would be bifurcation from one of the (semi-)trivial branches

T0 := {(β, 0, 0) ∈ R × E × E : β ∈ R},
T1 := {(β, µ−1/2

1 w, 0) ∈ R × E × E : β ∈ R},
or

T2 := {(β, 0, µ−1/2
2 w) ∈ R × E × E : β ∈ R}.

It is clear that there is no bifurcation from T0. Due to the results in [6] there is only one
bifurcation point on T1 that produces nonnegative solutions. This is at β = µ1 where bifur-
cation from a simple eigenvalue takes place; see the proof of [6, Lemma 2.2]. According
to the Crandall–Rabinowitz theorem (see [11] or [17, Theorem I.5.1]) there is locally a
unique bifurcating branch which, in the case µ1 < µ2, must be our trivial branch Tw ∩(
(−√

µ1µ2, µ1)× E × E
)
, so Sk ∩ T1 = ∅. Similarly, there is only one bifurcation point

on T2 where nonnegative solutions bifurcate, namely at β = µ2. Again we have bifurcation
from a simple eigenvalue and the unique bifurcating branch here is Tw∩((µ2,∞)× E × E)
in the case µ1 < µ2, so Sk ∩ T2 = ∅. If µ1 = µ2 then Sk ∩ T1 = ∅ = Sk ∩ T2 holds for
k ≥ 2 according to Remark 2.2c). It follows that all solutions on Sk must be strictly positive,
hence they are solutions of (1.2).

Finally, if Sk is bounded there exists a solution (β, u, v) ∈ ∂Sk \ {(βk, uβk , vβk )}. There
are two possibilities: Either (β, u, v) ∈ Tw \ {(βk, uβk , vβk )}, and we are done, or one of the
components u, v is not strictly positive. In the latter case, by the maximum principle this
component would then be 0 and we would have bifurcation from one of the (semi-)trivial
branches T0, T1 or T2, which is not possible as shown above. ��

4 Proof of Theorems 2.3, 2.5 and 2.6

We begin with the proof of the Liouville type theorem.

Proof of Theorem 2.6 Let (u, v) be a classical radial solution of the system (2.3) such that
(µ1 −β)1/2u −(µ2 −β)1/2v has only finitely many zeroes. If β > −√

µ1µ2 then u = v = 0
according to [13, Theorem 2.1]. In fact, for this range of β problem (2.3) has no classical
nontrivial solution at all. Thus we only need to consider the case β ≤ −1. The argument
below works for β < µ1 ≤ µ2. We consider the case c is finite, the case c = ∞ is similar
and simpler.

Suppose (u, v) 	= (0, 0). Setting

α :=
(
µ1 − β

µ2 − β

)1/2

(4.1)
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we claim that the difference αu − v must have infinitely many zeroes. The function αu − v
solves the equation

−(αu − v)′′ − N − 1

c + r
(αu − v)′ = αµ1u3 − βu2v + αβuv2 − µ2v

3

= (
µ1u2 + (µ1 − β)1/2(µ2 − β)1/2uv + µ2v

2) (αu − v)

as a simple calculation shows. Setting f = αu − v and

q = µ1u2 + (µ1 − β)1/2(µ2 − β)1/2uv + µ2v
2

we obtain the simple equation

− f ′′ − N − 1

c + r
f ′ = q(r) f. (4.2)

Claim 1 Given r0 > −c such that f (r0) ≥ 0 and f ′(r0) > 0 there exists s0 > r0 with
f ′(r) > 0 for r0 < r < s0, f ′(s0) = 0.

Proof Since f ′(r0) > 0 we may assume that c0 := f (r0) > 0. Now we define

s0 := sup{s > r0 : f ′(r) > 0 for r0 ≤ r ≤ s} ∈ (r0,∞]
and observe that f is strongly increasing on the interval (r0, s0). Then we have

u(r) >
f (r)

α
≥ f (r0)

α
= c0

α
> 0 for all r ∈ (r0, s0)

and therefore q(r) ≥ µ1u2(r) ≥ µ1c2
0

/
α2 for r ∈ (r0, s0). This in turn yields

f ′′(r) = − N − 1

c + r
f ′(r)− q(r) f (r) ≤ −q(r) f (r) ≤ −µ1c3

0

/
α2 for r ∈ (r0, s0),

hence s0 < ∞. ��
Claim 2 Given s0 > −c such that f (s0) > 0 and f ′(s0) ≤ 0 there exists r1 > s0 with
f (r) > 0 for s0 < r < r1, f (r1) = 0.

Proof If f ′(s0) = 0 then f ′′(s0) = − N−1
c + s0

f ′(s0) − q(s0) f (s0) < 0, so increasing s0 we
may assume that f ′(s0) < 0. Now we define

r1 := sup{r > s0 : f (s) > 0 for s0 ≤ s ≤ r} ∈ (s0,∞]
and want to show that r1 < ∞. Observe that

((c + r)N−1 f ′(r))′ = −(c + r)N−1q(r) f (r) < 0. (4.3)

Therefore (c + r)N−1 f ′ is strictly decreasing on the interval (s0, r1). For N = 1 or N = 2
this implies easily r1 < ∞.

It remains to consider the case N = 3. Suppose to the contrary that r1 = ∞, hence
f (r) > 0 for r > s0. Below ci denotes various positive constants. We first claim that

f (r) → 0 as r → ∞. (4.4)

(4.3) implies (c + r)2 f ′ < 0, hence f ′ < 0 in [s0,∞), and therefore f (r) → c1 ≥ 0 as
r → ∞. If c1 > 0 then f , hence u, q and q f are bounded away from 0 in [s0,∞). Now
(4.3) implies ((c + r)2 f ′(r))′ ≤ −c2(c + r)2 and thus (c + r)2 f ′(r) ≤ −c3(c + r)3 for r
large. This implies f ′(r) → −∞ as r → ∞, hence r1 < ∞, a contradiction.
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Next we claim that

(c + r)2 f ′(r) → −∞ as r → ∞. (4.5)

In order to see this, observe that (4.2) implies ((c + r) f )′′ < 0 in [s0,∞), and consequently
((c + r) f )′ > 0 because (c + r) f > 0 in [s0,∞). It follows that f (r) > c1/(c + r), hence
q(r) > c2/(c + r)2 and

(c + r)2 f ′(r) = c3 +
r∫

r0

((c + s)2 f ′(s))′ ds = c3 −
r∫

r0

(c + s)2q(s) f (s) ds

< c3 −
r∫

r0

c4

c + s
ds → −∞ as r → ∞.

Next we prove that

(c + r)2q(r) → ∞ as r → ∞. (4.6)

By (4.5), for any C > 0 there exists R(C) > 0 such that f ′(r) < −C/(c+r)2 for r > R(C).
Using (4.4) it follows that

f (r) = −
∞∫

r

f ′(s)ds ≥
∞∫

r

C

(c + s)2
ds = C

c + r
,

hence (c+r) f (r) > C and (c+r)2q(r) > C2/α2 for r > R(C). Since C > 0 was arbitrary,
(4.6) follows.

Now (4.6) implies that the differential operator D := − d
dt

(
(c + r)2 d

dt

) − (c + r)2q on
L2((s0,∞)) is unbounded below. Then [14, Theorem XIII.7.40] implies that f being a solu-
tion of D f = 0 has arbitrarily large zeroes, contradicting the assumption r1 = ∞. This
proves Claim 2. ��
We have proved that given r0 > −c with f (r0) ≥ 0 and f (r) > 0 for r > r0 close to r0

there exists r1 > r0 with f (r1) = 0 and f ′(r1) < 0. Using analogous arguments one sees
that given r1 > −c with f (r1) ≤ 0 and f (r) < 0 for r > r1 close to r1 there exists r2 > r1

with f (r2) = 0 and f ′(r2) > 0. It follows that f = αu − v has infinitely many zeroes. This
completes the proof of the Theorem. ��
Remark 4.1 Claim 2 in the proof of Theorem 2.6 in the case N = 2, 3 can also be derived
from [8, Theorem 3.3(iii)] which asserts that −�u ≥ uq has no positive solution in the
exterior of a ball if q ≤ N

N−2 . Using the definition of f and c ≥ 0, if f ′ ≤ 0 Eq. (4.2) yields
the inequality −� f ≥ µ1α

2 f 3. It follows readily that f cannot be positive for all r large,
so f has to have infinitely many zeroes.

Now we turn to the

Proof of Theorem 2.5 This is done by a standard blow-up argument. In dimensions N = 2
and N = 3 we write the system in the radial variable r = |x | for r ∈ (a, b) with 0 ≤
a < b ≤ ∞. Suppose there exists a sequence (βn, un, vn) of (radial) solutions of (1.2) with
βn → β, ‖un‖∞ → ∞ and such that the difference (µ1 − βn)

1/2un − (µ2 − βn)
1/2vn

has at most k zeroes for every n ∈ N. We may assume that ‖vn‖∞ ≤ ‖un‖∞ and choose
rn , such that un(rn) = ‖un‖∞. Now we set εn := ‖un‖−1∞ and ũn(r) := εnun(rn + εnr),
ṽn(r) := εnvn(rn + εnr). Then clearly ũn, ṽn are bounded in L∞ and satisfy the system
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⎧⎪⎪⎨
⎪⎪⎩

−ũ′′
n − εn(N − 1)

rn + εnr
ũ′

n + ε2
nũn = µ1ũ3

n + βn ṽ
2
n ũn

−ṽ′′
n − εn(N − 1)

rn + εnr
ṽ′

n + ε2
n ṽn = µ2ṽ

3
n + βnũ2

n ṽn

(4.7)

on the scaled domain a−rn
εn

< r < b−rn
εn

.
If N = 1 let the domain be (a, b) with −∞ ≤ a < b ≤ ∞. Then, after passing to a

subsequence, a−rn
εn

and b−rn
εn

converge in [−∞,∞], and (ũn, ṽn) converge in C2
loc as n → ∞

towards a solution (u, v) of ⎧⎪⎨
⎪⎩

− u′′ = µ1u3 + βv2u,

− v′′ = µ2v
3 + βu2v,

u, v ≥ 0.

(4.8)

Here u and v are defined on an interval of the following possible forms: (−∞,∞), (−c,∞)

with c ≥ 0, and (−∞, c) with c ≥ 0. But for the last possibility (u(−r), v(−r)) solves
(4.8) on (−c,∞) reducing to the second possibility. In any case, we obtain a solution (u, v)
of (2.3) with N = 1 which is nontrivial because u(0) = limn→∞ ũn(0) = 1. Observe that
(µ1 − β)1/2u − (µ2 − β)1/2v can have at most k simple zeroes because this holds true for
all (µ1 − β)1/2ũn − (µ2 − β)1/2ṽn . This contradicts the Liouville theorem 2.6.

Now we consider the dimensions N = 2 or N = 3. Up to a subsequence we may assume
rn/εn → c ∈ [0,∞] as n → ∞. Suppose first rn/εn → ∞ along a subsequence, so that
εn(N−1)
rn+εnr → 0. Then (ũn, ṽn) converge in C2

loc along a subsequence towards a solution (u, v)

of (4.8) on domains of three possible forms: (−∞,∞), (−c,∞) with c ≥ 0, and (−∞, c)
with c ≥ 0. As above we may reduce the third to the second possibility and obtain a contra-
diction with Theorem 2.6 because the solution is nontrivial and (µ1 −β)1/2u − (µ2 −β)1/2v
has at most k simple zeroes.

It remains to consider the case where rn/εn → c ∈ [0,∞) along a subsequence, so that
εn(N−1)
rn+εnr → N−1

c+r . Then after passing to a subsequence, (ũn, ṽn) converge in C2
loc as n → ∞

towards a solution (u, v) of (2.3). Since εn → 0 we must have rn → 0 and a = 0 which
implies that (u, v) solves (2.3) on (0,∞). Again we obtain a contradiction to the Liouville
theorem 2.6. ��
Finally we give the

Proof of Theorem 2.3 In the one-dimensional and the radial setting all eigenvalues are sim-
ple, so each bifurcating branch Sk must be global. Now for (β, u, v) ∈ Sk near the bifurcation
point (βk, uβk , vβk ) the proofs of Lemma 3.1 and Lemma 3.2 imply

u = uβk + (β − βk)γ−(βk)φk + o(β − βk)

and

v = vβk + (β − βk)φk + o(β − βk)

as β → βk . Here γ−(βk) is given in (3.6) and φk is the k-th eigenfunction of (2.1). With α
as in (4.1) we claim that

αu − v = (β − βk)αφk + o(β − βk)

has precisely k − 1 simple zeroes provided β is close to βk . Here we first note that φk

has precisely k − 1 simple zeroes (see Theorem XIII.7.53 and Corollary 7.56. of [14]
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for a related case, and also [12]). Now f = αu − v solves, in radial coordinates, the
equation

− f ′′ − N − 1

r
f ′ + f = αµ1u3 + αβv2u − µ2v

3 − βu2v

= (
µ1u2 + (µ1 − β)1/2(µ2 − β)1/2uv + µ2v

2) · f

=: q(r) f.

This implies that f cannot have a double zero because otherwise f = 0, hence αu = v,
which in turn implies u = uβ , v = vβ . Now we bootstrap the perturbation term o(β − βk)

from the H1-norm to the C1-norm, so (u, v) converges to (uβk , vβk ) in the C1-norm as
β → βk . If the domain is bounded we easily deduce the claim. If the domain is unbounded
and f has more than k − 1 zeroes then there have to be zeroes of f moving to infin-
ity as β → βk . Then there exist a positive maximum (or a negative minimum) of f
moving to infinity as β → βk . Using the fact that u and v both go to zero as r →
∞ uniformly for β close to βk we get − f ′′ + f = q(r) f with q(r) < 1 at a large
positive maximum (or negative minimum) r of f , which is not possible. The claim is
proved.

It follows from the same argument that αu −v has precisely k −1 simple zeroes for every
(β, u, v) ∈ Sk \ {(βk, uβk , vβk )}. As a consequence, Sk ∩Tw = {(βk, uβk , vβk )}, and Sk must
be unbounded. Now Theorem 2.5 implies that Sk must be unbounded in the β-direction,
i.e., pr1(Sk) ⊂ R is unbounded. Since the branch Sk cannot approach to Ti for β ≤ 0 with
i = 0, 1, 2 and since for β = 0 the only positive solution to (1.2) is (u0, v0) it follows that
pr1(Sk) ⊂ (−∞, 0), hence pr1(Sk) ⊃ (−∞, βk). ��
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