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Abstract. Electro-kinetic fluids can be modeled by hydrodynamic systems
describing the coupling between fluids and electric charges. The system con-

sists of a momentum equation together with transport equations of charges. In
the dynamics, the special coupling between the Lorentz force in the velocity
equation and the material transport in the charge equation gives an energy

dissipation law. In stationary situations, the system reduces to a Poisson-
Boltzmann type of equation. In particular, under the no flux boundary con-

ditions, the conservation of the total charge densities gives nonlocal integral
terms in the equation. In this paper, we analyze the qualitative properties
of solutions to such an equation, especially when the Debye constant ε ap-

proaches zero. Explicit properties can be derived for the one dimensional case
while some may be generalized to higher dimensions. We also present some

numerical simulation results of the system.

1. Introduction. Electro-kinetics describes the dynamic coupling between incom-
pressible flows and diffuse charge systems. A small physical parameter, ε, known
as the Debye constant, leads to boundary layers in the charge densities and elec-
trostatic potential, and consequently the flow. At small length scales, this layer
is responsible for a variety of geometrically dependent flows, which, in turn, find
application in microfluidic devices in bio-applications [8, 10, 13, 17, 19]. Analyzing
the dependence of the flow on the domain geometry and ε, is one of the focal points
in the study of electro-kinetics.

In this paper we largely discuss the qualitative properties of limiting stationary
solutions. The stationary solution solves a Poisson-Boltzmann type equation. We
derive explicit bounds as ε approaches zero for solution extrema and boundary gra-
dients in one space dimension. A major feature of the system is a nonlocal integral
term in the nonlinearity which arises from the charge density conservation. In con-
trast to other Poisson-Boltzmann equations, this nonlocal dependence is responsible
for the fact that solutions blow up like log(ε−2) in certain cases. We present some
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Figure 1. Plot of u of finite element simulation of (1) for flow past an

insulated, grounded, conducting cylinder. Ω = [−L, L]× [−1, 1]\Br(0, 0) ⊂ R
2

for L � 1 and r = 0.2; only [−1, 1] × [−1, 1] is shown. Farfield boundary

conditions are given by ∂yφ = 0, ∂yu = 0 for y = 1,−1 and φ = sign(x)V and
u = (U, 0) for x = 1,−1. Grounding and no slip boundary conditions on the
cylinder are given by φ = V/10, u = 0 for |x| = r. Left, U = V : flow dominates

charge convection. Right, U = 0: Lorentz force dominates the flow.

numerical results to exemplify the three important cases and provide evidence for
an upper growth bound.

1.1. Electro-Kinetic Model. The (normalized) equations governing hydrody-
namic transport of binary diffuse charge densities are [2, 4, 14],































ρ(ut + u · ∇u) + ∇π = λ∆u + ε2∆φ∇φ,

∇ · u = 0,

nt + u · ∇n = ∇ · (∇n− n∇φ),

pt + u · ∇p = ∇ · (∇p+ p∇φ),

ε2∆φ = n− p,

(1)

with boundary conditions

u
∣

∣

∂Ω
= 0, (2)

φ
∣

∣

∂Ω
= φ0, (3)

(∇n− n∇φ) · n
∣

∣

∂Ω
= 0, (4)

(∇p+ p∇φ) · n
∣

∣

∂Ω
= 0. (5)

The first two equations of (1) are the linear momentum equations of incompress-
ible flow. u is the velocity field, ρ is the fluid density (which we take as a constant),
and π is the pressure, not to be confused with p, the positive ion density. The
rightmost term in the momentum equation is the Lorentz force1. This can be seen
by noting that E = −∇φ is the electric field and ε2∆φ = n − p is the net charge
density. Moreover, the Lorentz force represents the balance between kinetic energy

1We assume that the average ion velocities is small (compared to the speed of light), so that
the contribution to the Lorentz force from the magnetic field is negligable.
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and electric energy as seen through the Least Action Principle applied to the action
functional

A[x] =

∫ T

0

∫

Ω

ρ

2
|xt(X, t)|

2 −
ε2

2
|∇φ(x(X, t))|dXdt,

under the pure transport of charge. See [16]. (2) is the no slip boundary condition.
The third and fourth equations of (1) model the balance between diffusion and

convective transport of charge densities by flow and electric fields. n and p are the
charge densities of a negatively and positively charged species respectively, hence the
sign difference in front of the convective term in either equation. The assumption
that the charge densities are transported by the electric field (up to a scalar multiple
and the valence of the charge) is equivalent to assuming that the material in question
is Ohmic, on average, charges migrate according to Coloumb’s law, see [14]. We
have set the diffusivity and mobility tensors which appear in front of the density
diffusion term and convective term to unity. Boundary conditions (4) and (5) model
non-reactive boundaries and along with (2) guarantee zero flux of n and p at the
boundary.

The fifth equation of (1) is the Poisson equation for the electrostatic potential φ,
where the right hand side is the net charge density. ε is a small parameter, known as
the Debye length2, related to vacuum permittivity and characteristic charge density
(molarity).

We study qualitative properties of solutions to (1-5) as ε goes to zero.

1.2. Other Electro-kinetic and Diffuse Charge Models.

Remark 1. The diffuse charge system, has been studied in the context of electro-
chemical cells [1, 3, 6, 9, 15] and electrorheological systems [2, 4, 11, 14, 18, 19, 20].
The fundamental difference between these approaches and that presented in this
paper are the boundary conditions (3) and (4). In the study of electrochemical
cells, one introduces the ionic flux j in place of 0 in (5). j, φ

∣

∣

∂Ω
then satisfy an ad-

ditional (usually nonlinear) constraint to model reaction dynamics as in [9]. They
seek an (formal) asymptotic relationship j(φ) (or φ(j)) which captures the limiting
behavior of the system as ε→ 0.

In contrast, we take j = 0. A benefit from this simplification is that the stationary
equations have a variational structure from which we make rigorous assertions about
the existence and limiting qualitative properties of solutions. We point out that in
this setting, only the electroneutral case leads to a finite asymptotic solution. See
theorem 4 and theorem 6. The reader may note, and as will be seen below, the third
and fourth equations of (1) along with boundary conditions (4) and (5) have a one
dimensional kernel. Traditionaly, the charge densities are then uniquely determined
by an extra Dirichlet, or bulk, boundary condition, giving rise to a Boltzmann
distributions of the form c0e

±φ where c0 is a constant (w.r.t. ε) given by the
boundary data. One may check that in the stationary setting such a boundary
condition leads to a finite limiting electrostatic potential, which is in contradiction
with our findings and with the notion of charge accumulation at boundaries.

2Exactly, ε2 = ε0εrkT/C∞e2, where ε0 is the permittivity of vacuum, εr is the relative per-

mittivity, kT is thermal energy, C∞ is the characteristic charge density and e is the elementary
charge. Typically, ε ranges from 10−4 to 10−7.
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In [9], the authors incorporate an effective capacitance CS of the “Stern layer”,
through the boundary condition

φ+ C−1
S ε∇φ · n = φ0. (6)

For Ω = (0, 1), and φ0(0) = 0, φ0(1) = v, p and φ satisfy a nonlinear boundary
condition

kcp(0)e
αcφ(0) − jre

−αaφ(0) = j

−kcp(1)e
αc(φ(1)−v) + jre

αa(v−φ(0)) = j

for fixed, positive constants kc, αc, αa, jr (see for example [1],[9]). A corollary of our
results is the following consistency requirement for the Butler-Volmer boundary
condition: if CS = ∞, then one recovers the boundary condition φ(0) = 0 and
φ(1) = v. For j = 0, it follows that p(0) and p(1) are determined, and in particular,
bounded, and nonzero. However, we have shown that p(0) and p(1) remain finite

and bounded away from zero if and only if
∫ 1

0
p dx−

∫ 1

0
ndx = O(ε2). Thus for an

electrochemical cell with zero current and infinite effective capacitance, the Butler-
Volmer condition is valid only if the total charge densities are equal.

Electrorheological models decouple the momentum equation of (1) from φ by
introducing an effective slip velocity; us ∝ ε2Et(l)(φ(l, j) − φ∞)/λ in place of (2).
l is the thickness of the diffuse charge layer. It is, however, difficult to capture
the coupling between l, φ, u and the domain geometry, rigorously. Typically, this
coupling is ignored [4], while it is unclear whether the equilibrium distribution of
charges on the boundary is independent of the velocity field, see figure 1.

Other related works include the coupling of charge densities, electric potential,
and elastic deformations which has been modeled in [22], or, a system of equations
similar to (1.3-1.5) found in the modeling the overdamped gravitational interaction
of a cloud of particles or chemotaxis in bacteria [7]. The latter system represents
an attractive force between particles, and thus differs in the sign of the convective
term in the third and fourth equations of (1). In contrast to (1) and theorem 2,
these equations exhibit finite time singularities.

2. Energy Laws and Global Weak Existence. We briefly discuss the existence
of a Leray type of solution of (1-5) on the unbounded domain. Smooth solutions
of (1-5) satisfy the energy laws developed below. The energy laws extend to a
modified-Galerkin method [12], from which we then derive a weak limit. It is worth
noting that the dissipation of kinetic energy due to the Lorentz force is realized in
the transport of net charge densities.

First, we present a maximum principle argument which guarantees the positivity
of the charge denisities n and p.

Theorem 1. Let u ∈ C([0, T ];C2(Ω)), ut ∈ C([0, T ];C(Ω̄)) and a convective term
b ∈ C([0, T ];C1(Ω)) satisfy

{

ut −∇ · (∇u+ ub) ≥ 0,

(∇u+ ub) · n
∣

∣

∂Ω
≥ 0.

If u(0, x) > 0 for all x ∈ Ω, then u > 0 in Ω and u ≥ 0 in Ω̄ for all t ∈ [0, T ].

Proof. We begin by assuming that ut − ∇ · (∇u + ub) > 0. We show first that
u(t, x) 6= 0 for any x ∈ Ω and t ∈ [0, T ] and then use this result to determine
nonnegativity on the boundary.
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Suppose that u is zero in Ω or takes negative values in ∂Ω. Let s = min{t ∈
[0, T ] : minx∈Ω̄ u(x, t) ≤ 0}. Choose z ∈ Ω̄ such that u(z, s) = 0. By definition,
u(z, t) > u(z, s) for 0 ≤ t < s and u(x, s) ≥ u(z, s) for all x ∈ Ω. If z ∈ Ω,
∆u(z, s) ≥ 0, ∇u(z, s) = 0, and ut(z, s) ≤ 0, leading to the contradiction,

0 ≥ ut(z, s) > ∆u(z, s) + ∇u(z, s) · b(z, s) + u(z, s)∇ · b(z, s). ≥ 0

Now suppose that u(x, t) < 0 for some x ∈ ∂Ω. Let Z = {x ∈ Ω̄ : u(x, s) = 0}.
By the above argument, Z ∈ ∂Ω. Let Ut = {x ∈ Ω : u(x, t) < 0} and Dr =
{x ∈ Ω̄ : dist(x, Z) ≤ r}. We make an assertion; there exist a continuous scalar
function η : [s, T ] → R with η(s) = 0 and Ut ⊂ Dη(t). Suppose to the contrary that
no such η exist. Then, for some δ > 0, there exists xt ∈ Ut with dist(xt, Z) > δ.
By compactness, some subsequence of {xt} converges to x∗ ∈ Ω̄ with u(x∗, s) =
limt→s u(xt, t) = 0. Hence x∗ ∈ Z and dist(x∗, Z) > δ, a contradiction. Consider
the following;

∫

Ut

ut dx >

∫

Ut

∇ · (∇u+ ub) dx

=

∫

∂Ut∩∂Ω

(∇u+ ub) · n dS +

∫

∂Ut\∂Ω

(∇u+ ub) · n dS

≥

∫

∂Ut\∂Ω

∇u · n dS ≥ 0.

The last inequality follows since since ∂Ut\∂Ω is the zero level set of u. The inequal-
ity

∫

Ut

ut dx > 0 implies there exist xt ∈ Ut with ut(xt, t) > 0. Since xt ∈ Ut ⊂ Dη(t)

and limt→s η(t) = 0, we find that some subsequence of {xt} converges to an element
z∗ in Z. Consequently, 0 < limt→s ut(xt, t) = ut(z

∗, s) ≤ 0, a contradiction.
Returning to the nonstrict inequality, let u satisfy ut −∇ · (∇u+ ub) ≥ 0. Then

v = u+ εt satisfies vt −∇ · (∇v + vb) ≥ ε > 0 for all ε > 0. v > 0 in Ω × [0, T ] and
v ≥ 0 in Ω̄ × [0, T ]. Since this holds for all ε > 0, u > 0 in Ω × [0, T ] and u ≥ 0 in
Ω̄ × [0, T ] for all ε.

Suppose that n, p and φ are smooth solutions of (1-5). Multiplying equations
three and four of (1) by n and p respectively, and integrating over Ω;

1

2

d

dt
‖n‖2

L2(Ω) = −‖∇n‖2
L2(Ω) −

1

2
(n2,∆φ) +

1

2

∫

∂Ω

n2∇φ · n dS.

1

2

d

dt
‖p‖2

L2(Ω) = −‖∇p‖2
L2(Ω) +

1

2
(p2,∆φ) −

1

2

∫

∂Ω

p2∇φ · n dS.

Summing the above equations, we find

1

2

d

dt
(‖n‖2

L2(Ω) + ‖p‖2
L2(Ω)) + (‖∇n‖2

L2(Ω) + ‖∇p‖2
L2(Ω))

= −
1

2ε2
(n+ p, (n− p)2) +

1

2

∫

∂Ω

((n)2 − (p)2)∇φ · n dS. (EL1)

(·, ·) denotes the L2(Ω) inner product. Note that the second to last term above
is positive if one can guarantee that n(t, x), p(t, x) ≥ 0 for all (x, t) ∈ Ω × [0, T ].
Choosing b = ±∇φ and j = 0 in theorem 1, it follows that n, p > 0 in Ω × [0, T ]
and n, p ≥ 0 in Ω̄ × [0, T ] if n0, p0 > 0 in Ω.



362 ROLF RYHAM, CHUN LIU AND ZHI-QIANG WANG

Multiplying the first equation of (1) by u and integrating over Ω, we find the
kinetic energy dissipation;

1

2

d

dt
‖u‖2

L2(Ω) = −λ‖∇u‖2
L2(Ω) + ε2

∫

Ω

∆φ∇φ · u dx. (7)

Subtracting the fourth from the third equation of (1), one finds that φ satisfies

ε2∆φt + ε2u · ∇∆φ = ∇ · (ε2∇∆φ− (n+ p)∇φ).

Multiplying this expression by φ and integrating over Ω we find

ε2
∫

∂Ω

φ∇φt · n dS −
ε2

2

d

dt
‖∇φ‖2

L2(Ω) − ε2
∫

Ω

∆φ∇φ · u dx

= −ε2
∫

∂Ω

∆φ∇φ · n dS + ε2‖∆φ‖2
L2(Ω) +

∫

Ω

(n+ p)|∇φ|2 dx (8)

Equating ε2
∫

Ω
∆φ∇φ · u dx in (7) and (8), we find

1

2

d

dt
(‖u‖2

L2(Ω) + ε2‖∇φ‖2
L2(Ω)) + λ‖∇u‖2

L2(Ω) + ε2‖∆φ‖2
L2(Ω)

= −

∫

Ω

(n+ p)|∇φ|2 dx+ ε2
∫

∂Ω

(φ∇φt + ∆φ∇φ) · n dS (EL2)

We specify a tuple (uN , nN , pN , φN ), where uN is solution of the finite dimensional
Galerkin formulation of equation one and two of (1) and (nN , pN , φN ) solve equa-
tions three through five of (1) identically with u replaced by uN . Immediately,
(uN , nN , pN , φN ), also satisfies (EL1) and (EL2). If φ takes the natural boundary
condition ∇φ · n = 0 or Ω = R

n, then all boundary terms vanish and (EL1) and
(EL2) are dissipative. We have then

Theorem 2. Let (i) ∇φ ·n = 0 or (ii) Ω = R
n. For u0 ∈ (L2(Ω))2, n0, p0 ∈ L2(Ω),

there exists (u, n, p, φ), defined on [0, T ] satisfying (1) weakly and u(0) = u0, n(0) =
n0, p = p0, almost everywhere in Ω.

For a proof of theorem (2), and discussion of (EL1) and (EL2) for bounded
domains, see [16].

3. Stationary Solutions. The stationary problem is defined as that where u = 0

and nt = pt = 0. In this setting, (1) becomes










∇ · (∇n− n∇φ) = 0,

∇ · (∇p+ p∇φ) = 0,

ε2∆φ = n− p.

(9)

Due to incompressibility, (2), (4) and (5), the total charge densities from the dy-
namic problem are conserved (for the moment consider the dynamic variables n, p
and u again);

d

dt

∫

Ω

ndx =

∫

Ω

nt dx = −

∫

∂Ω

(∇n− n∇φ) · n + nu · n dS −

∫

Ω

n∇ · u dx = 0.

Similarly, the dynamic variable p would satisfy d/dt
∫

Ω
p dx = 0. If the the stationary

equations are to be viewed as the equilibrium equations of (1), then specifying
∫

Ω
ndx and

∫

Ω
p dx are necessary constraints on (9). Infact, the equations one and
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two of (9) along with (4) and (5) respectively, are well posed (see [16]) with the
additional constraints

∫

Ω

ndx = α,

∫

Ω

p dx = β. (10)

for some α, β > 0.
Suppose now that (n, p, φ) satisfy (9) weakly. Then n and p satisfy equations

one and two of (9) and (10) respectively for some φ, and by uniqueness of solu-
tions to these equations with boundary conditions (4) and (5) and constraints (10)
respectively,

n = α
eφ

∫

Ω
eφ dx

, p = β
e−φ

∫

Ω
e−φ dx

. (11)

When written in the form of exponentials of φ, n and p satisfy a Boltzmann distri-
bution. However, in the case above, the coefficient has a nonlocal correction for the
mass of n and p respectively. Entering the relations (11) in the Poisson equation of
(9), one finds

ε2∆φ = α
eφ

∫

Ω
eφ dx

− β
e−φ

∫

Ω
e−φ dx

, φ
∣

∣

∂Ω
= φ0. (12)

We point out that (12) is the Euler-Lagrange equation of the energy

E[u] =
ε2

2
‖∇u‖2

L2(Ω) + α log

(
∫

Ω

eu dx

)

+ β log

(
∫

Ω

e−u dx

)

.

The existence of a unique solution to (12) and consequently the existence of a
unique stationary solution of (9) is guaranteed by the direct method of the calculus
of variations;

Theorem 3. Let Ω be a bounded, open subset of R
n with smooth boundary and

φ0 ∈ C0(∂Ω). Then there exists at most one φ ∈ C∞(Ω) ∩ C0(Ω̄) satisfying (12).

Theorem 3 follows from the fact that E is a convex functional bounded from
below. See [16] for details.

3.1. Summary of One Dimensional Results. Henceforth we restrict ourselves
to the one dimensional problem. The three limiting properties for ε→ 0 are

1. If α = β, then solutions stay bounded and converge uniformly in the interior
to the average of the boundary values. The boundary layer has an ε thickness
and the limiting profile is exponential.

2. If α < β, then for sufficiently small ε, solutions are convex and converge
uniformly to a constant (w.r.t. x) in the interior. This constant is asymptotic
to log(ε−2); the lower bound is rigorous, while the upper bound is numerical.

3. Analogous results hold for α > β.

Figures 2 and 3 demonstrate the numerical simulation of these cases.

3.2. Properties of Poisson-Boltzmann Type Equation. An interpretation of
the one dimensional problem is that of a stationary diffuse charge system, enclosed
by two infinite, nonreactive plates with fixed voltage. Let Ω = (−1, 1) and let φ be
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φ

x

i
ii
iii

iv, v
vi

Electroneutral Solution
φ

x

i, ii

iii

iv

v

vi

Zero Voltage Solutions

Figure 2. Graphs i, ii, . . . , vi of numerical solutions of (13) correspond-
ing to limiting parameter ε = 1, 2−2, . . . , 2−10. Numerical solutions are con-

vergent limit of the iterative procedure; c±i 7→ φi+1 by solving the poisson

equation with standard finite elements and φi+1 7→ c±i+1 by solving the convec-

tion/diffution equations with finite element scheme laid out in [23] for piecewise

linears over 128 equally spaced grid points. Left, φ0(−1) = φ0(1): φ diverges
as ε → 0. Right, α = β: φ converges to (φ0(−1) + φ0(1))/2.

a solution of

ε2φ′′(x) = α
eφ(x)

∫ 1

−1
eφ(y) dy

− β
e−φ(x)

∫ 1

−1
e−φ(y) dy

, ∀x ∈ (−1, 1), (13)

φ(−1) = φ0(−1), φ(1) = φ0(1). (14)

Note that solutions commute with translation of (14), i.e. φ+c is a solution to (13),
(14) if φ0 is replaced by φ0 + c for c ∈ R. Consequently, in the lemma and theorem
statements below, we may without loss of generality shift the boundary data.

The major difficulty of analyzing properties of φ is the nonlocal terms in (13). The
righthand side of (13) does, however, have several properties that can be analyzed.
We introduce the following notation related to the right hand side of (13); given a
continuous function φ, define b(φ) : R → R by

b(φ)(t) = α
et

∫ 1

−1
eφ(y) dy

− β
e−t

∫ 1

−1
e−φ(y) dy

. (15)

Further, define a(φ) : R → R by a(φ)(t) = b(φ)′(t). Note that a(φ)(t) > 0 for all
t and b(φ)(t) is strictly increasing in t. Also, define B(φ), A(φ) : (−1, 1) → R by
B(φ)(x) = b(φ)(φ(x)) and A(φ)(x) = a(φ)(φ(x)). Equation (13) is then equivalent
to

ε2φ′′(x) = B(φ)(x), ∀x ∈ (−1, 1). (16)

Lemma 1. Let φ ∈ C0(Ω̄). Then

1.
∫ 1

−1
B(φ) dx = α− β and

∫ 1

−1
A(φ) dx = α+ β.

2. B(φ)′ = A(φ)φ′ and A(φ)′ = B(φ)φ′.

3. B(φ) is monotone with respect to φ in the sense that if φ(x) < φ(y), then
B(φ)(x) < B(φ)(y).
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4. There exists a unique φ∗ ∈ R such that B(φ)(x) = a(φ)(φ∗) sinh(φ(x) − φ∗)/2
and a(φ)(φ∗) ≤ minx∈(−1,1)A(φ)(x).

Proof. (1) and (2) follow immediately from the definition of B(φ) and A(φ). (3)
follows from the fact b(φ) is strictly increasing so that B(φ)(x) = b(φ)(φ(x)) <
b(φ)(φ(y)) = B(φ)(y). φ∗, the unique zero of b(φ) and consequently unique critical
point of a(φ) can be calculated as:

e2φ∗ =
β

∫ 1

−1
eφ dy

α
∫ 1

−1
e−φ dy

.

It is clear that a(φ)(φ∗) minimizes a(φ) and consequently A(φ). We check the iden-
tity in (4) directly;

a(φ)(φ∗) sinh(φ− φ∗) = α
eφ − e−φe2φ∗

∫ 1

−1
eφ dy

− β
e−φ − eφe−2φ∗

∫ 1

−1
e−φ dy

= 2B(φ).

The above properties hold for all continuous functions φ. If, however, φ solves
(13) and (14), then B(φ) and A(φ) have additional structural properties. Lemma
2 shows that B(φ) solves a second order equation with a negative zeroth order
coefficient bound away from zero. Although the boundary values of B(φ) are not
known, the equation it solves, in contrast to (13), is local and linear. Below we
develope positivity criterion for extremal values and comparison functions for B(φ).
These become important in proving that all non-electroneutral (α 6= β) solutions
diverge as ε→ 0 (see Lemma 3, theorem 6.)

Lemma 2. If φ ∈ C∞(Ω)∩C0(Ω̄) satisfies (13), then B(φ) has no positive internal
local maxima and no negative internal local minima. Further, there exist µ, θ > 0
independent of ε such that θ ≤ a(φ)(φ∗) ≤ µ for all ε 6= 0 where φ∗ is given in
Lemma 1.

Proof. Consider the following; B(φ)′′ = (A(φ)φ′)′ = B(φ)(φ′)2 +A(φ)φ′′. Note that
ε2φ′′ = B(φ), so that B(φ) satisfies

ε2B(φ)′′ = B(φ)(ε2(φ′)2 +A(φ)). (17)

Since A(φ) > 0, it follows that if B(φ)(x) > 0 for some x ∈ (−1, 1), then B(φ)′′(x) >
0 so that B(φ)(x) cannot be a maximum. Similarly, a negative value cannot be a
mimimum.

By Lemma 1 (4),

2
√

αβ

(
∫ 1

−1

eφ dx

∫ 1

−1

e−φ dx

)− 1

2

= a(φ)(φ∗) ≤ min
x∈(−1,1)

A(φ)(x).

The lemma is proved if we can show that
∫ 1

−1
eφ dx

∫ 1

−1
e−φ dx is bounded above

and below independently of ε 6= 0. We have shown that B(φ) has no negative
internal minima. Without loss of generality, assume that φ0(−1) ≤ φ0(1). Then
min{0, B(φ)(−1)} ≤ B(φ)(x) for all x ∈ (−1, 1). In particular,

−β
e−φ0(−1)

∫ 1

−1
e−φ dy

≤ min{0, B(φ)(−1)}
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φ

x

i, ii

iii

iv

v

vi

General Solutions
φ(0)

ε = 10−3ε = 1

Limiting Bulk Value

lo
g(

ε
−

2 )
α
�

β
α

<
β

φ 0
(−

1)
=

φ 0
(1
)

Figure 3. Left: numerical solutions i, ii, . . . , vi for φ0(−1) < φ0(1), α <
β and ε = 1, 2−2, . . . , 2−10. Right: log(ε−2) is plotted by a dashed line for

comparison. Note that all solid lines become parallel with the dashed line as

ε → 0.

which, after some arithmetic, implies that

e−2φ(x) ≤
α

∫ 1

−
e−φ dy

β
∫ 1

−1
eφ dy

+ e−φ0(−1)e−φ(x) ∀x ∈ (−1, 1).

Integrating this inequality over (−1, 1), by Hölder’s inequality, we find

1

2

(
∫ 1

−1

e−φ dx

)2

≤

∫ 1

−1

e−2φ dx ≤ 2
α

∫ 1

−1
e−φ dx

β
∫ 1

−1
eφ dx

+ e−φ0(−1)

∫ 1

−1

e−φ dx.

Multiplying by 2
∫ 1

−1
eφ dx

/ ∫ 1

−1
e−φ dx, we find the inequality below;

∫ 1

−1

e−φ dx

∫ 1

−1

eφ dx ≤ 4
α

β
+ 2e−φ0(−1)

∫ 1

−1

eφ dx. (18)

Similarly, B(φ) has no positive internal maxima so that B(φ)(x) ≤ max{0, B(φ)(1)}
for all x ∈ (−1, 1). An analogous argument to the one above will give the inequality

∫ 1

−1

e−φ dx

∫ 1

−1

eφ dx ≤ 4
β

α
+ 2eφ0(1)

∫ 1

−1

e−φ dx. (19)

Finally, we claim that (18) and (19) imply the result
∫ 1

−1

e−φ dx

∫ 1

−1

eφ dx ≤ C

for some C = C(α, β, φ0). To see this, let x =
∫ 1

−1
eφ dx, y =

∫ 1

−1
e−φ dx, c1 = 4α/β,

c2 = 2e−φ0(−1), c3 = 4β/α, and c4 = 2eφ0(1). Then x and y satisfy xy ≤ c1 + c2x
and xy ≤ c3 + c4y. If x ≤ y, then x2 ≤ xy ≤ c1 + c2x ≤ c1 + c22/η + ηx2 so that
x ≤ C(c1, c2) after choosing η sufficiently less than 1. But then xy ≤ c1 + c2x ≤
c1 + c2C(c1, c2). If x ≥ y, the same holds true for C = C(c3, c4).

To produce a lower bound, Hölder’s inequality shows that 4 = (
∫ 1

−1
eφ/2e−φ/2 dx)2

≤
∫ 1

−1
e−φ dx

∫ 1

−1
eφ dx.
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3.3. Limiting Behaviour in Several Classes. Here we consider solutions of (13)
as ε→ 0. Two distinct limiting behaviours emerge depending solely on the ratio of α
to β. In the case when α = β (called electroneutral), theorem 4 demonstrates that
solutions stay bounded. For α 6= β (non-electroneutral case), Lemma 3 demon-
strates that solutions diverge with the order log(ε−1). By a bootstrap argument,
theorem 6 increases the growth order to log(ε−2). Numerical solutions suggest that
this is infact an upper bound on growth as well, see figure 3. All results for α < β
below have an analogous result for α > β, where convexity is replaced by concavity,
etc.

Theorem 4 demonstrates that electroneutral solutions converge exponentially to
the average value of the boundary data. These solutions have a boundary layer of
thickness ε, and exponential boundary layer profile. In particular, the boundary
gradients are of order ε−1. In constrast, non-electroneutral solutions have boundary
gradients of order ε−2. See theorem 5. Electroneutral solutions for vanishing ε are
graphed in figure 2.

Theorem 4. Let φ ∈ C∞(Ω) ∩ C0(Ω̄) satisfy (13) and (14) for α = β and
−φ0(−1) = φ0(1) ≥ 0. Then φ is odd, monotone, convex for x ∈ (0, 1) and concave
for x ∈ (−1, 0), and there exist η1,2 and g ∈ C∞

c ([0, 1)) independent of ε such that

φ0(1)[e
η1(x−1)/ε − e−η1/εg] ≤ φ(x) ≤ φ0(1)e

η2(x−1)/ε, x ∈ (0, 1). (20)

where g(0) = 1 and g′(0) = 0.

Remark 2. Commutativity of solutions with the boundary data with respect to
addition of a constant implies that we may without loss of generality shift the
boundary data so that it is odd.

With g compactly supported in [0, 1), (20) implies that φ′(1) = φ′(−1) is bounded
above and below by constant multiples of ε−1.

Proof. It is immediate to check that if φ satisfies (13) and (14), then ψ defined
by ψ(x) = −φ(−x) does as well. By the uniqueness of solutions to (13) and (14),
ψ = φ and consequently φ is odd.

Using the oddness of φ, one may check that
∫ 1

−1
eφdx =

∫ 1

−1
e−φdx. Along with

α = β, this implies that b(φ)(0) = 0 so that in lemma 1 (4), φ∗ = 0. By lemma 1
(4), we may rewrite (13) as

ε2φ′′ = ρ sinh(φ)

where ρ = a(φ)(φ∗)/2 > 0. Note that φ(−1) ≤ 0 and φ(0) = 0. Suppose that φ
is positive somewhere in (−1, 0). Then φ has a positive maximum at x0 ∈ (−1, 0)
such that 0 ≤ ε2φ′′(x0) = ρ sinh(φ(x0)) > 0, a contradiction. Thus φ(x) ≤ 0, is
convex, and consequently monotone for x ∈ (−1, 0). By oddness, φ is concave and
monotone on (0, 1) as well. In particular, φ0(−1) ≤ φ(x) ≤ φ0(1) for all x ∈ (−1, 1).

By lemma 2 and the above remark, ρ and φ are bounded above and below
independently of ε. Thus there exist C1,2 > 0 independent of ε such that C2φ ≤
ρ sinh(φ) ≤ C1φ for x ∈ (0, 1). Certainly there exists a g satisfying the hypothesis.
(20) is then obtained by ODE comparison from above and below with the right and
left hand sides of (20) respectively, with η2

2 ≤ C2 and η2
1 ≥ C1(1+maxx∈[0,1] |g(x)|)+

ε2 maxx∈[0,1] |g
′′(x)|.

Lemma 3. If φ ∈ C∞(Ω) ∩ C0(Ω̄) satisfies (13) for α < β, then

max
x∈(−1,1)

φ(x) ≥ log(ε−1) + C
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for some C = C(α, β, φ0) independent of ε.

Proof. Without loss of generality, assume that φ0(−1) ≤ φ0(1). Then, by lemma 1
(1) and lemma 2, B(φ) takes a negative value and thus B(φ)(−1) < 0. Consider
the auxiliary function v(x) = B(φ)(−1)[exp(−η(x + 1)/ε) + exp(η(x − 1)/ε)] for
θ > η > 0 independent of ε where θ is the constant given in lemma 2. Note that
v < 0, v(±1) ≤ B(φ)(±1) and

ε2v′′ − (ε2(φ′)2 +A(φ))v = v[η2 − ε2(φ′)2 −A(φ)] > 0.

By ODE comparison, v(x) ≤ B(φ)(x) for all x ∈ (−1, 1). Also,

2ε

η
B(φ)(−1)(1 − e−2η/ε) =

∫ 1

−1

v dx ≤

∫ 1

−1

B(φ) dx = α− β.

It follows that
∫ 1

−1
e−φ dx ≤ Cε for some C = C(α, β, η) and thus φ(x0) ≥ log(ε−1)+

log(C) for some x0 ∈ (−1, 1).

Theorems 5 and 6 both characterize the case α 6= β. Theorem 6 deals with
general boundary values while theorem 5 deals with the specific zero voltage case,
φ0(−1) = φ0(1). Typical limiting solutions are plotted in figures 2 and 3

Theorem 5. Let φ ∈ C∞(Ω)∩C0(Ω̄) satisfy (13) and (14) for α < β and φ0(−1) =
φ0(1) = 0. Then φ is even, concave,

φ′(−1) = −φ′(1) =
(β − α)

2ε2
(21)

and

φ(0) ≥ log(ε−2) + C (22)

for some C independent of ε.

Proof. Again, one may check that ψ(x) = φ(−x) also satisfies (13) and (14) and
thus ψ = φ is an even function.

Differentiating ε2φ′′ = B(φ) with respect to x and multiplying by φ′ we find

ε2φ′′′φ′ = B′(φ)(φ′)2 = A(φ)(φ′)2.

Due to evenness, φ′(−x) = −φ′(x) and φ′′(x) = φ′′(−x) for all x ∈ (−1, 1). Inte-
grating the above expression over (−a, a) for 0 < a < 1 gives

2ε2φ′′(a)φ′(a) = ε2φ′′φ′
∣

∣

∣

a

−a
=

∫ a

−a

(φ′)2 +A(φ)(φ′)2 dx.

The right hand side is nonnegative so that φ′′(a)φ′(a) ≥ 0 for all 0 < a < 1. In
particular, this implies that φ′′ does not change sign on (0, 1). Since

α− β = ε2
∫ 1

−1

φ′′ dx = 2ε2
∫ 0

−1

φ′′ dx,

φ′′ < 0 if α < β. Thus φ is convex and positive with maximum φ(0).
Integrating ε2φ′′ = B(φ) over (−1, 1) with φ′(−1) = −φ(1) will give (21). Mut-

liplying ε2φ′′ = B(φ) by φ′ we find

ε2

2
((φ′)2)′ = (A(φ))′.
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Integrating this expression over (−1, 0), φ′(0) = 0 and (21) imply that

(α− β)2

8ε2
= α

1 − eφ(0)

∫ 1

−1
eφ dx

+ β
1 − e−φ(0)

∫ 1

−1
e−φ dx

.

Certainly,
∫ 1

−1
eφ dx ≤ 2eφ(0) and

∫ 1

−1
e−φ dx ≥ 2e−φ(0), giving the upper bound

(α− β)2

4ε2
≤ αe−φ(0) + βeφ(0) − (α+ β).

Taking e−φ(0) < 1,

φ(0) ≥ ln

(

(α− β)2

4βε2
+ 1

)

.

Theorem 6. Let φ ∈ C∞(Ω)∩C0(Ω̄) satisfy (13) and (14) for α < β and φ0(−1) <
φ0(1). Then there exist ε∗ > 0 such that for ε < ε∗, φ is convex and

max
x∈(−1,1)

φ(x) ≥ log(ε−2) + C1 (23)

for some C1 independent of ε. Further,

|φ(y) − φ(x)| ≤
C2

ε
e−η/ε(sinh(ηy/ε) − sinh(ηx/ε)), 0 < x, y < 1 (24)

for some C2, η > 0 independent of ε.

Remark 3. The estimate (24) shows that for any compact subset K of (−1, 1),
the difference between any two values in this set converges exponentialy to zero,
since −1 + δ < x and y ≤ 1 − δ for some δ depending only on K. Consequently, φ
converges uniformly to a constant value, e.g. φ(0), on K.

Proof. By lemma 3, there exists C independent of ε and ε∗ > 0, such that for all
ε < ε∗, there exists a y0 ∈ (−1, 1) for which φ(y0) > φ0(1). In particular, φ has an
interior maximum for some x0 ∈ (−1, 1). Then

0 ≥ ε2φ′′(x0) = B(φ)(x0).

However, by lemma 1 (3), B(φ) is monotone with respect to φ, so that B(φ)(y) ≤
B(φ)(x0) ≤ 0 for all y ∈ (−1, 1). Consequently, φ is convex and −φ′(−1) and φ′(1)
share the same sign. Thus max{φ′(−1),−φ′(1)} ≥ ε−2(β − α)/2. Without loss of
generality, assume that φ′(−1) = max{φ′(−1),−φ′(1)} and φ0(−1) = 0. Following
theorem 5, multiplying ε2φ′′ = B(φ) by φ′ and integrating over (−1, x0), gives

(α− β)2

8ε2
≤
ε2

2
(φ′(−1))2 = α

1 − eφ(x0)

∫

Ω
eφ dx

+ β
1 − e−φ(x0)

∫

Ω
e−φ dx

.

Then the bound φ(x0) ≥ log(ε−2) + C follows exactly as in theorem 5.
Consider, ε2((φ′)2)′′/2 = ε2(φ′′)2 +A(φ)(φ′)2. By ODE comparison, (φ′)2/2 ≤ v

where v = (φ′(−1))2/2[exp(−η(x+ 1)/ε) + exp(η(x− 1)/ε)] for θ ≥ η > 0. Then

|φ(y) − φ(x)| =

∣

∣

∣

∣

∫ y

x

φ′(s) ds

∣

∣

∣

∣

≤

(
∫ y

x

(φ′(s))2 ds

)
1

2

≤ |φ′(−1)|

∫ y

x

exp(−η(s+ 1)/ε) + exp(η(s− 1)/ε) ds

= |φ′(−1)|
2ε

η
e−η/ε(sinh(ηy/ε) − sinh(ηx/ε)).
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The theorem follows by noting that |φ′(−1)| ≤ (β − α)/ε2 for ε ≤ ε∗.

4. Conclusion. In summary, we have demonstrated that the limiting behaviour of
solutions to (13), (14) depends only the ratio of total charges. When α = β, then
solutions remain bounded and converge exponentially to the average value of the
boudnary data. Further, the boundary layer is exponential of thickness ε, so that
φ may be expanded as a matched inner and outer asymptotic solution. If α 6= β,
then solutions diverge uniformly in the interior to ±∞ and form a boundary layer
of thickness ε2. From theorem 6, solutions converge exponentially on compact sets
to a constant value which grows at the order log(ε−2). We are currently not able
to show that this is also an upper bound for growth, which is strongly suggested
by our numerical simulations. In figure 3 we see that the interior values of three
representative cases are asymptotic to log(ε−2).

Many of the results in this paper may be generalized to higher dimensions. In
particular, lemma 3 holds for all dimensions and domains. With some additional
control on the geometry of ∂Ω, a result similar to theorem 6 follows for the case
when φ0 is a constant. In the cases when Ω and φ0 are radially symmetric, most of
the above arguments follow with slight modifications. Nevertheless, to be coherent,
we have illustrated the properties for solutions of the one dimensional problem
only. In [16], we will present, along with a proofs of theorems 2 and 3, these higher
dimensional generalizations.
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