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Abstract

For nonlinear Schrodinger equations in the entire space we present new results on invariant
sets of the gradient flows of the corresponding variational functionals. The structure of the
invariant sets will be built into minimax procedures to construct nodal type bound state solutions
of nonlinear Schrodinger type equations.
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1. Introduction

The principal project of this paper is to investigate the structure of invariant sets of
the associated gradient flows for nonlinear Schrodinger equations in the entire space,
and in conjunction with minimax method to construct nodal type bound state solutions.
In particular, we shall study how the structure of global invariant sets depends upon
the local behavior of the flow near the trivial critical point 0. The novelty of our work
is to discover a new family of invariant sets when there is a hyperbolic structure near
the trivial critical point 0. As applications we shall provide multiplicity results of nodal
type bound state solutions for nonlinear Schrédinger type equations. More precisely,
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as a model problem we consider the existence of nodal (sign-changing) solutions for
nonlinear time-independent Schrédinger equations of the form

—Au+V,(x)u= f(x,u) inRY, (1.1)

which satisfyu(x) — 0 as|x| — oo. This type of equations arise also from study
of standing wave solutions of time-dependent nonlinear Schrédinger equations. The
potential functionV,(x) := Ag(x) + 1 satisfies the following conditions:

(V1) g € C(RM,R) satisfiesg >0 and Q := int(g~1(0)) is nonempty.
(Vo) There existMpy > 0 andrg > 0 such that

lim m({x eRN:x —y|<ro}Ni{x e RN:g(x)§M0}> =0,

|y|=00

wherem denotes the Lebesgue measureRh.
(V3) Q= g1(0) and 0Q is locally Lipschitz.

As . — oo, V, has a steep potential well, and we are interested in finding solutions
trapped in the potential well. Under the above conditions, the linear operaier V,
may have a finite number of eigenvalues below the infimum of the essential spectrum
[3]. Obviously, these eigenvalues (bound states to the linear problem), except the first
one, have nodal eigenfunctions. We shall show that under suitable asymptotically lin-
ear perturbationsf (x, u), the nonlinear problem1(1) has multiple bound state nodal
solutions resembling the nodal structure of the linear problem.

In order to state our conditions dnwe introduce the following eigenvalue problem
on Q (cf. [25, Proposition A.1};

—Au+u =vu inQ
u=0 ondQ. } (1.2)
Let the eigenvalues of this problem be denoted by ¢ < v2 < v3 < ---, which will
occasionally be written as @ u; < u,<puz< ---, counting their multiplicity. Using

the conventionvg := —o0, we make the following assumptions én

(fo) f € CRY xR,R).
(f1) f(x,s) is odd ins.
(f2) There exists am € No := {0, 1,2, ...} such that uniformly inx € R",

.. X, S . X, S
Vi < liminf /(¢ )g Ilmsupf( )
|s|—0 s Is|]—0 s

< Vim+1-

(f3) There exists am € Ng, n # m such that uniformly inx € RV,

v, < liminf f&x,s) < lim supf(x’s)

|s]—00 s |s]— 00 N

< Vn+1.
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(fa) There exists ag > 0 such that| f (x, s)| <cgls| for all (x, s).
(fs) There exists arl. >0 such thatf (x, s) + Ls is increasing ins.

Let dim(v;) denote the dimension of the eigenspace associated with the eigemyalue
Set

k
di =Y dim(v;) and do:=0.
i=1

Theorem 1.1. Assume(V1)—(V3) and (fo)—(fs). Then there exists al > 0 such that
for all 21> A4, Eqg. (1.1) has at least|d,, — d,| pairs of nodal solutions provided
min{m, n}>1, and at least|d,, — d,| — 1 pairs of nodal solutions imin{m, n} = 0.

Remark 1.2. In the case mifm, n} = 0, there is also a pair of signed solutions- 0,
—u < 0.

Remark 1.3. Though the existence result is stated and will be proved in detail only for
the model Eqg. 1.1) with the nonlinearity given above, the approach we shall take will
be useful for more general types of nonlinearities. The understanding of invariant sets
for gradient flows has been the center issue in dealing with nodal solutions. The key
new ingredient we provide here is the construction and the structure of a new family
of invariant sets of the associated gradient flows (this is done in Section 4), which, to
our knowledge, is the first nontrivial construction of invariant sets near a saddle critical
point. By using a combination of invariant sets method and minimax method as is done
in this paper, many multiplicity results on nodal solutions for bounded domains like in
[1,4,14] can be generalized to nonlinear Schrdédinger equations in the entire space, for
example, superlinear problems with a saddle point at 0, asymptotically linear problems
with resonance, nonlinear eigenvalue problems, etc. We leave the precise statements to
interested readers.

We finish the section with some historical comments on related work and methods
involved, and outlining in more detail our approach.

In the case wheréis assumed to be superlinear, nonlinear Schrédinger type equations
have received a lot of attention in the past. It is only recently that nonlinear Schrédinger
type equations with asymptotically linear terms have been studief@2y23] Stuart
and Zhou studied radially symmetric problem. More general situations were considered
in [8,11,12,15,26] In most of these papers, the potential function is either periodic
or autonomous at infinity. Asymptotically linear problems with potentials in this paper
have been studied ifi24,25], in which multiple solutions were constructed without
giving nodal information about the solutions. On the other hand, results like Theorem
1.1 for problems in bounded domains have been givefl#].

In this paper, we shall construct nodal solutions for EfQ.L)( by building upon
the general idea of combining invariant sets with minimax method (which has been
very successful for bounded domain problems, €44,14,18] and by developing
new techniques which will overcome difficulties for unbounded domain problems. To
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describe our basic idea and approach, let us introduce some notations. It is well known
that weak solutions of1(1) correspond to critical points of

1
I(u) = ff (|Vu|2+VAu2)dx—/ F(x,u)dx,
2 JrN RN

in H; :={u € HYRN) : |lu|l; < oo}. Here F(x, u) := 6‘ f(x,s)ds and | - ||, is the
norm induced by the inner product

(u, v); = / (Vu - Vv + Vyuv) dx.
RN

The main idea of this paper is to construct certain invariant sets of the gradient flow
associated to the energy functiongl so that all positive and negative solutions are
contained in these invariant sets and that minimax procedures can be used to construct
nodal critical pointsof the energy functional outside these invariant sets. As a byproduct
we give more information of the dynamical nature of the gradient flow. This type
of idea has been used successfully for elliptic problems on bounded domains (c.f.
[1,4,9,13,14,18] In general, the cone of positive (and negative) functions in the Sobolev
space is invariant under the gradient flow. However, these cones have empty interior,
and it is very difficult to build a deformation in relation to these cones and to construct
critical points outside of these cones using a minimax method. In bounded domains, the
dense subspac(éé(f)) of H&(Q) has been used, since the cone of positive (and negative)
functions inC&(fZ) have nonempty interior. We remark also that an interesting approach
without using the cones structure was used@h for bounded domain problems but
may not be suitable for getting multiple nodal critical points for even functionals (see
[5] for more references). For problems RY, there is no known replacement for
C&(Q) since C(%(RN) has no interior points either. This has been the major obstacle
for generalizing many results on nodal solutions from the bounded domain case to the
entire space case. For a superlinear problem, this has been done r§Zerigwever,
it turns out that the existence of these invariant sets depend in a subtle way on the
behavior of the functional near 0. If2], under the condition that O is a strict local
minimum critical point, it was shown that a neighborhood, in the Sobolev space norm,
of the cone of positive (and negative) functions is an invariant set. When 0 is a saddle
point (as in most of the cases of this papen neighborhood of the positive and
negative cones can be invariant sets anymore. The main project of this paper is to
develop new techniques to construct invariant sets for the case of 0 being a saddle
point. Obviously, our construction can be used for more general type of problems.
The paper is organized as follows. Section 2 contains some preliminary technical
results. Section 3 is devoted to the construction of a minimal positive solution and a
maximal negative solution tol(1). This is essential for the construction of invariant
sets containing all positive and negative solutionsltd)( so all the solutions obtained
outside of these invariant sets by minimax procedures are nodal solutions. In Section
4, we construct new invariant sets which depend upon the local behavior of the energy
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functional 7, near 0. Results in Sections 3 and 4 are also interesting for their own
sake, and will be used in Section 5 for the proof of the existence results, Theorems
5.5 and 5.8, which together give Theorer.1

2. Preliminaries

In the following, Bz will denote the ball inRY centered at zero with radiug,
BS := RN\ Bg. The spaceL”(R") will be denoted byL?. We first state the following
useful technical result:

Lemma 2.1 (Van Heerden and Wan[25]). Assume(V1)—(V2). Then for any ¢ > 0
there existR > 0 and A > 0 such that

2 2
ol e <elull,

forall u e Hy and 1> A.

For any given elementg, ..., ¥, of H;, we set

Uy, - Yp) = uiglg{”u”% Nullzgz =1, (u, ;) =0fori =1,...,k}.
For k € N, we define the spectral values 6fA 4+ V; by the kth Rayleigh quotient

= sup Uy, .. ¥p).
Vs W_1€H),

For anym € N, [3, Corollary 2.2] asserts that for. sufficiently large, the operator
—A+V; has at leastl,, = ) /", dim(v;) eigenvalues, ..., ,uf;m. The corresponding

eigenfunctions are denoted by, ....e; with [le/l|l,2 = 1. As a consequence {24,
Lemma 2.5] we conclude that:

Lemma 2.2. Assume(V1)—(V3). Then,u,i~ — W as A — oo for all k € N.

Proof. Fix any k € N. First we haveu,fguk as a simple minimax description of the
eigenvalues (sep0, Section Xlll.1] for instance). According t§24, Lemma 2.5] the
limit g = lim;_, ,ui is an eigenvalue of1(2). The proof of[24, Lemma 2.5]shows

the weak limite; = lim _, o e,f in H, is an eigenfunction of .2) corresponding
to w; and |lexll,2 = 1. Thus e,@ converges toe; strongly in L? as . — oo. For
any i, j € {1,....k} with i # j, (¢}, etz = O implies (e;, ej)12q) = 0. As a
consequencey; > ;.. This together withu,ﬁguk gives the result. O
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Set
Ey :=spatey, ..., eq}, Eq:={0}
and
Ex(2) := sparef, ... e} }. Eo(Z) :={O}.

Let Ekl and (Ex(2))* denote the orthogonal complement 8§ and E;() in Hj,
respectively.

Recall that(u,) € H, is a Palais—Smale ((PS) for short) sequencdoff 7,(u,) is
bounded and’(u,) — 0. I, is said to satisfy the (PS)-condition if any such sequence
contains a convergent subsequence. The following lemma is a more general version
of a result in[24,25], and the proof here is different from, and simpler than that in
[24,25]

Lemma 2.3. Assume(V1)—(V3), (fo0),(f3) and (fa). Then there exists al > 0 such
that the functionall; satisfies thgPS-condition for all 1> A.

Proof. We only consider the case>1; the casen = 0 is similar and simpler. Take
vy, < b1 <bp < v,4y1 and T > 0 such that forlu|>T, b1 < f(x, u)/u<b. By Lemma
2.2, we can taked; > 0 such that forA> A,

b b
mm{Tl—l, 1- /12 }>a>0
K, K, +1

for somea > 0. By LemmaZ2.1, there exist1, > 0 and Ry > 0 such that fori> A,

lullZ2gpe , <collull?, u € H;. (2.1)
0

where

. a 2
0< &0 < Min { (m) s l} (22)

and o = b1ba/ (b2 — b1) and cg is from (fy).
Now let (u,) be a (PS) sequence fa, with 1> max{A1, A2}. Let Z, = {x :
lun(x)|=T}. Writing u, = v, + w, with v, € E,(1) andw, € (E,(4)* and taking
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inner product oflﬁ(un) andv, — w,, we see that

o(D) - llunll;

2 2 SO, un) 5 2
= a2 = w2 - / T ) 2 2y g [ ) — wn)
Z, Un Ze

<||vn||§—||wn||§_—b1f v3+bzf w,%—/ £ ) (o — )
Z, Z, Ze

=||vn||§—||wn||§—b1f v5+b2f w,2,+b1/ v,f_bzf w2
RY RY z; z

- S, up) (v — wy)

Zc

n

b1 by
<—<7—1> ||vn||§—<1— > >||wn||§+b1/ v,%—bzf wy
Hd, Ha,+1 Z 2

n n

_/ S, up) (g — wy).
z;

Next, we claim

b1/ v,%—bZ/ w%écx/ u,zl
25 25 25

To see this we choosg = (« — by) /o = o/ (4 b2). Expandingu? = v2 + w? + 2v,w,,
and using Hoélder’s inequality, we get

b1v? — bow? — ou? < (b1 — o+ af)v> + (—o+ a/ff — bp)w? = 0.

On the other hand,

FO, up)(wy — wy)

1/2 1/2
< ( fx, un)z) (/ (vp — wn)z)
Ze Ze

n

< co(C(Ro) + v/eollunl ;) lunll ;-

Z¢

¥

Combining these we get, witli'(Rg) a constant depending only aRy,

allun |5 <o lunll; + (C(Ro) + eollunll?) + coC (Ro)llun l; + co/zollunll3,
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which gives the bound of the sequence. Assume that, without loss of any generality,
up, — u in H; andu, — u in L%C(RN) for someu € H,, which is a solution to the
problem

—Au+V,(x)u = f(x, u) in RN,

Taking inner product of;(u,) andu, — u, noting that/;(u) = 0, and using(fs), we
have for anyR > Ry,

lun — ull3 = o(D) +/RN(f(x’ up) — f(x, w)(up —u)dx

< 0(1)+CO/ (lun| + uD|uy — ul dx
By
170 ) = 0l — uldx
Br
< 0(1)+co/ |u,,—u|2dx+200/ lul|u, — u|dx
B, B,
[ 176 ) = 0l = uldx
Bg
1/2
< o) + Sy —ul? + 2 —ul; 2
\0()+2||un ull§ + 2collun — ull; ul®dx
By

+/B G ttn) — £ oo )l — 1] dx.

Thus

1/2
lun —ull3 < o(1) + Acolluy — ull; (/ |u|2dx>
B,

R

+2f G ttn) — £ ey )l — 1] dx.
Br

Since

1/2
lim (/ |u|2dx> =0
R—o00 7?
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and

n—o00

lim / | f(x, up) — f(x, w)llu, —uldx =0 for all R >0,
Bg

we obtain lim,_  |lu, — u||; = 0, as required. O]

The following lemma is a variant dfL8, Lemma 3.2] It can be proved in a similar
way as the proof of18, Lemma 3.2](cf. [18, Lemma 2.5}

Lemma 2.4. Let H be a Hilbert spaceD; and D, be two closed convex subsets of
H, and I € C1(H, R). Supposel’(u) = u — A(u) and A(D;) C D; for i =1, 2. Then
there exists a pseudo gradient vector field V of | in the fafw) = u — B(u) with B
satisfying B(D;) C D; for i =1, 2. Moreovet B(D;) C int(D;) if A(D;) C int(D;)
fori =1, 2,and V is odd if | is even and1 = —D»>.

Here recall thal/ is a pseudo gradient vector field biif V € C(H, H), Vg is
locally Lipschitz continuous withK := {u € H : I'(u) = 0}, and (I'(w), V(u)) >
21wl and |V )| <2/|1'w)|| for all u € H.

3. Minimal positive solution and maximal negative solution

In this section, we will construct a minimal positive solution and a maximal negative
solution to problem 1.1). This is essential for the construction of invariant sets con-
taining all the positive (and the negative) solutions in Section 4. In a bounded domain
case, this can be done by an iterative procedure [(s8e for instance). Unfortunately,
the argument used in bounded domain case does not work with our problem due to
the lack of compactness of the operator. We will use variational arguments to construct
these solutions.

With respect to the normj- ||, we havel(u) = u—K; f(-,u) whereK, : H; — H,
denotes the inverse operator oA + V;:

K= (-A+V) "

In view of (f5), we may assume thaf(x, s) is increasing ins. Otherwise, we just
replace the norm - ||, on H, with the equivalent one

lully ; = /RN(IWIZ + (Vo) + L) u?) dx
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and replacef (x, u) with f(x,u) + Lu. What follows for the casd. = 0 work just as
well for the caseL > 0. Throughout this section we will assume
(f2) liminf 50 f(x,s)/s > v1 uniformly in x.

The main result of this section is as follows.
Theorem 3.1. Assume(V1)—(Va), (fo), (f2), (fa), (fs), and assume that there exists a

positive solutionw™ and a negative solutiom™ to (1.1). Then there exists a minimal
positive solutionu™ and a maximal negative solutios™ to (1.1).

Proof. We only prove the existence af". Define

flx,wrx) if s >whkx),
fx,) =14 f(x,s) if w () <s<wt(x),
fx,w™x) if s <w (x).

We consider the following cut-off problem:

—Au+ V;(x)u = f(x, u) in RV,
ueH,. } (3.1)

We claim that for all solutionsi of (3.1), it holds w=(x) <u(x) <w™(x) for all x
RY. Seeking a contradiction, suppoge:= {x € RY : u(x) > wt(x)} # ¢ for some
solutionu of (3.1). Then Z is an open subset &Y and onZ:

—Au+Vu=fx,wh)=—-Aw"+Vwt,

which implies that—A@u — w™) + V,(u — w) = 0. Sinceu(x),w (x) — 0 as
|x| — oo, we conclude by the maximum principle thatx) = w™(x) for all x € Z,
a contradiction. In a similar fashion, we see that (x) <u(x) for all x € RV.

Now consider the energy functional associated waH){

N 1 ~
L) = Enunﬁ—/ F(x,u)dx,
RN

where F(x, u) = fé‘ f(x,s)ds. The above discussion shows that any critical point of

[, is a (weak) solution of the original probleni.(). From the definition off;, and f,
it follows that

~ 1 _ 1 _
IA(M)>§||M||§—C1/RN(|W+|+|w ) |u|dx>§||u||§—cl(||w+||Lz+||w ll22) lluell ;.-
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Here and in the sequely; are constants. Thug; is coercive. Next we verify the
(PS)-condition for/,. Supposeu,) € H, satisfy I;(u,) — ¢ for some numbec, and
I}(un) — 0. Then(u,) is bounded inH,. Thus, up to a subsequenag, — u in H)
andu, — u in LE)C(RN) with u a solution of {.1). To obtain the strong convergence
in H;, we observe that

B wnun = (Nunl = ul2) - /R (o wun = forwu) ax

and for anyR > 0,

/Bg (f(x, Up)y — f(x, u)u) dx

< Co [ (o wT) G+l dx

By

< C3 (||w+||L2(B;) + ||w7||L2(B;é)) .

Thus ||u,|l; — llull; which implies the strong convergence.

Recall thate; is the first eigenfunction of 1(2). We may assume; > 0. By
(fz), there exists* > 0 andd > 0 such thatf(x,s)/s > v¢ + 9 for 0 < |s| <s*.
ChooseR; > 0 andsg > 0 such thatwt(x) < s* for |x|>Ry and sgei(x) <
wt(x) for |x|<R1. We claim thatsge1(x) < wt(x) for all x € RY. Indeed, if
X = {x e RN : sper(x) > w*(x)} #+(, thenX C BICel N Q and we have

—A(spe1) + Vysper = visger in X, (3.2)
—Awt +Vwt = fx,wh) in X, 3.3)
soer = wh on oX, (3.4)

0 ow™
sot < Y onox, (3.5)

ov ov

where v denotes the outer unit normal @Y. Multiplying (3.3) with (sge1) and sub-
tracting it from @.2) multiplied with w* yields

/ ((soel)AwJr - w+A(soel)) dx = / soe1 (vlw+ — f(x, w+)) dx.
X X
Since forx e X, f(x,w™) > (v1 + Hw™, we see that

/ soe1 (v1w+ — f(x, w+)) dx < / (soe1)(—=dwT)dx < O.
X X
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However, 8.4), (3.5 and the divergence theorem imply

+ Jeq

)
/ ((soel)Aw+ _ w+A(s0e1)) dx = f soe1 <0w -
X 0X v ov

o

) do >0,

a contradiction. Thus, for & s <sp,
A vls2 2
Pi(sen) = L(sen) = 2 / 2 dx — / F(x, ser) dx.
2 Jo Q

Decreasingsg if necessary, we may assum@x, se1(x)) > (v1 + 5)s2e§(x)/2 for all
0 < s<sp andx € RY. Then,

. 2 S 2
I)(se1) < vi/ e%dx— u/ e%dx <0,
2 Jo 2 Q

for all 0 < s <so.

The fact that 0 andv™ are solutions of 1.1) and f is increasing ins imply that
0<K,; f(x,u)<w™T if 0<u<w™. For 0 < s<sg and ¢ >0, consider the following
initial value problem:

d ¢t _ t
’75 = seq,

A

whereV is a pseudo gradient vector field 6f in the formV = I — B with B satisfying
B([0, w™]) c [0, w"] and [0, w™] = {u € H; : 0<u<w™}; the existence o¥ is
guaranteed by Lemma.4 in which D; = [0, w*] and D, = @. Let [0, T,) denote
the existence interval of3(6). Since I, is coercive and satisfy the (PS)-condition, a

standard argument shows that there exists a sequgneeT; such thatn? — u® for
someu® € H, satisfying I;,(#*) < 0 and I//l(us) = 0. Since B([0, w*]) C [0, w™]
and 0<se; <w™, a theorem of Brezis—Martifv, Chapter 1, Theorem 6.3inplies that
o<l (x)<wt(x) for all x e RV, 0<r < Ty and 0< s <sp. Thus 0< % (x) <w™ (x)
for all x € RY. Chooses; € (0, so/2) such that G<sie1(x) <u®(x) for all x € RV.
Then the above discussion implieg@él(x)éum(x) forall t € [0, T,) and there exists
a positive solutiont** of (1.1) in the w-limit set of 1, satisfying 0< u**(x) <u*(x)
for all x e RY. Here a different pseudo gradient vector fisld= I — B may be used
in order thatB([0, u*0]) C [0, u*]. Repeating the above process infinitely many times,
we obtain a decreasing sequence of positive numpgisand positive solutiongu®)
of (1.1) such thats, — 0, I;(u") < 0,

O<...<u(x)<u 1< - <u®(x)<wt(x) forall x e RY
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and u®" lies in the w-limit set of ngn. Obviously, (u*) is a (PS)-sequence. The (PS)-
condition, together with the monotonicity af:**) imply that u® — u™* in H; and
u'(x) — ut(x) for all x e RN and for some nonnegative solutiart of Eq. (1.1).

Now we prove thau™ is a positive solution of {.1). Arguing indirectly, we assume
ut =0. Then

u™ — 0 in Hj. 3.7)

Choose a natural numbée such that 0< N —2 — 3k < 4. Sety; = 1+ i/k for
i=0,1,...,k For anyR > 0, from the eIIiptich;C estimates[10, Theorem 9.11]
we have

Il usn | W2.2N/(N-2) (By_1R)

S S,
<Ca (Ilf(x, W)l pav/w-2 (g, g + 0 |IL2N/<N_2)(BykR))

SCsllu™ |l pav/v-2p, 5 < Cellu™ 17,
which implies
S S
™ | ansov—s)(p, o) S Crllu™ 2,

where C7 depends only o\, R andf, but is independent of. Repeating the above
k times, we obtain,

™ [l w22n/v—2-30 (g ) < Callu™ |-

Since N/(N —2—3k) > N/2, the embeddingW22N/(N=2=30(Bp) <> C(Bg) is
continuous. Thus

™ || oo (Bgy < Collu™ || . (3.8)

Since u* solves (.1), for the numbers* given above there exists &> > 0 such
that u®0 < s* for all |x|> R2. From @.7) and @.8) there exists anV* > 0 such that
u'n(x) < s* for all |x] <Rz andn>N*. So,

un(x) < s* forall x e RN andn>N*.
Let e{ > 0 denote the first eigenfunction of the operateh + V), i.e.

—Ae} + Vief = pje on RN,
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Recall thatu’llgvl for all 1>0. Finally, multiplying
—Au' + Viu' = f(x,u’™)

with ei‘ and integrating, we obtain (for > N*),

ui‘/RN uefdx = /R f G et dx > (g + 9) fR u'eq dx,

a contradiction.

To complete the proof, it remains to show that constructed above is indeed a
minimal positive solution. Sincet(x) > 0 on RV, from the above discussion we
can choose arV1 > 0 such thats,e1(x) <ut(x) for all n>N; and x € RY. Thus
n, (x)<u(x) for all n>N1, t>0 andx € RY, which implies

W (x)<uT(x) for all n>N7 andx € RY.
Since (u* (x)) is decreasing im and u* (x) — u*(x) for all x € RV,
W (x) =ut(x) foral n>N; andx € RV,

Now, letu, be another positive solution ot (l). Fixing anni > N1 such thats, e (x) <
u1(x), we havengn1 (x)<u1(x) for all r>0 and therefore

ut(x) = u1(x)<up(x) for all x e RY.

This shows that:™ is the minimal positive solution of probleni.(). O

Remark 3.2. We note that the above proof is independentiofThus the conclusion

of Theorem3.1 holds true for a large class of potentials. For instance, we can obtain
the following more general result: Assumée C(RY, R), V is bounded below, andl
satisfies( fo), (f4), and (fs5). Assume in addition that uniformly ix

o fx, s
liminf
e p > U,
where
. Vul? + Vu?) dx
P (L

ue HLRN)\ (0} Jav u?dx
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Then the problem
—Au+V@u= f(x,u), ueHRY)

has a minimal positive (maximal negative) solution provided that it has a positive
(negative) solution.

We close this section with a sufficient condition for the existence of a positive (and
negative) solution to 1(1). From Theorem3.1 this would imply the existence of a
minimal positive (maximal negative) solution.

Theorem 3.3. Assume(V1)—(V3), (fo), (fg), (f4) and uniformly inx e RV

lim supf(x’ $) <

|s| =00 s

V1.

Then for A sufficiently large problem(1.1) has a positive and a negative solution.

Proof. We only prove the existence of a positive solution. We first show that/for
sufficiently large,l is coercive. By assumption, there existba- 0 andC; > 0 such
that

1
F(x,s)gé(vl—é)sz—}-cl for all s € R.
For anyR > O,

1
L) = —||u||§—/ F(x,u)dx—/ Fx,u) dx
2 N Br c

BR
1 vy —0
> —||u||§—l—/ uzdx—CllBRl—C2/ u? dx
2 h 2 Bg B,
1 V1 — 0
> Sl = =Sl - CalBel — Ca [ uPds
2 21 By

> _5 2 _ _ 2
> lully — C1|Brl —C2 | u®dx,
4v1 B,

for 2 sufficiently large, sayl > Ap (Here we used Lemma2.2). From Lemma2.1, there
exist Ry > 0 and A1 > Ag such that

o

2 2
u“dx < ul|s,
/c = 8C2V1 ” ||/L

Ry
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for all 1> A1. It follows that

)

1~<u>>i||u||2—cl\BR
AT gy A 1

for all A> A4, i.e. I, is coercive.
Fix an s such that/;(se1) < 0, the existence of such awas showed in the proof
of Theorem3.1 Consider the initial value problem

4yt = -V,
170 = seq.

HereV is a pseudo gradient vector field of in the formV = I — B with B satisfying
B(P;") C P\, whereP)” := {u € H; : u>0} is the positive cone irH;. The existence

of such aV is guaranteed by f,) and by Lemma2.4 (by (f4), we may assume that
f(x,s)>=0 for all s >0, otherwise we need just to replage and f (x, s) with V, +cg
and f(x, s) + cos, respectively). Sincd, is coercive, a standard argument shows that
there exists a positive sequenge— oo such that

L") < I(ser) <0 foralln, (3.9)
;™) — O. (3.10)

According to Lemme2.3, passing to a subsequence if necessary we may asgume
u in H;, whereu is a solution of {.1). Since B(P;") C P;" andse1 € P}, n' € P}
Thereforeu € P;“. The fact that/;(u) <I1;(n™) <I,(se1) < 0 impliesu # 0. Then by
the maximum principlex(x) > 0, for all x e RV.

Remark 3.4. Under stronger assumptions, the existence of a positive and a negative
solution was obtained if24].

4. Invariant sets of the gradient flow

In order to construct nodal solutions we need to isolate the signed solutions (positive
and negative solutions) into certain invariant sets. This section is devoted to this purpose.
Here we discover that it is the behavior Bf near the trivial critical point O that plays an
important role for the structure of these invariant sets. This will be done by distinguish-
ing the two opposite cases: limsyp.q f(x, s)/s < v1 and liminf—o f(x,s)/s > v1.

Define A(u) := K, f(-,u) = (=A+ V;)"1f(-,u), u € H; and

Ly () = —n'(u) + By’ (w))
W) =u,
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where B is related toA via Lemma2.4 in which D1 and D, will be constructed
in Theorem4.1 and Theoremd.2 This section is concerned with the construction of
these sets which are invariant under the flgvu) such that all positive (and negative)
solutions are contained in these invariant sets. Recall that a slibset H, is an

invariant set with respect tg if, for any u € W, 5’ (u) € W for all r > 0.
Denote

P ={ueH,:+u>0}.
For anyM C H; and¢ > 0, M, denotes the closeetneighborhood oV, i.e.
M, :={u € Hy : dist;(u, M) <e}.

The following result shows that a neighborhood Bf is an invariant set if 0 is
a local minimum critical point of the functional. This result was provedah for a
superlinear problem, but the proof covers our case as well. We quote the proof2from
for the readers convenience. We also note that this result is esseritialtiependent
as long asf!(x,0) < uf.

Theorem 4.1 (Bartsch et al.[2]). Assume (V1)—(V3), (fo), (fa), and (f5). If
lim SUPy—0 J (X, 8)/s <71 then there existg > 0 and A > 0 such that

APy Cint((PY)y)  for all 0 < e<eo, L>A,
and

' ((P)s) Cint((P)s) for all t >0, 0 <e<eo, and 1> A.

Proof. For u € Hj;, we denotev = Au andu™ = max0, u}, u~ = min{0, u}. Note
that for anyu € H; and 2< p<2* := 2N /(N — 2),

lu |lor = inf+ lu —wlLr. 4.1)

weP,
A

Since,

||v_||§ =W,v ), = / (Vv-Vv + Vv )dx = / fx,u)v™ dx,
i RN RN
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the fact thatv™ € P andv — vt = v, implies

dist; (v, P;H) - o™l <llv~ 12 < /R flrunu dx. (4.2)

Under the assumption lim SHPo f(x,8)/s <1 there exist & > 0 andC; > 0 such
that

F(x,8)= (1 — 8)s + Ca|s|? 25 for s<0.
Thus
/ fx,u)v dx < / [(vl —0u~ + C1|u7|2*72u7] v dx
RN RN

< (1= 0)llu”g2lv™ ”L2+Cl”“_”L2* Lol (4.3)

From the Sobolev imbedding and.{)—(4.3),

. _ vy —
disty (v, P;") - o7, < inf Jlu—wllzzllv”ll; + C2 inf IIM—wlle* i [P

0
/'u% weP weP

which implies (if v, # 0),

. V1 —
dist; (v, P1) < == inf Jlu—wlz2+Co inf Jlu— w7

/Mi weP; weP;

V1 — *_
— inf Jlu—wl;+Cs inf Jlu—w|F "
M1 weP weP

N

2 -1

_
= vl) dist; (u, P;") + C3 (dist; (u, P}"))
I '

Therefore, there existy > 0 and A > 0 such that if dist(u, P/{F)gso and /> A then
dist; (v, P}") < dist; (u, P}").

The first conclusion in Theorerh.1 is proved. The second conclusion is a consequence
of the first as shown 18] via Lemma2.4. [

Next, we consider the case limint.o f(x,s)/s > v1i. We first note that any neigh-
borhoods of the positive (and negative) cones are no longer invariant sets of the gradient
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flow. We give a new construction here. Choase- 0 andsg > 0 such that

> V140> +9, (4.4)

fx,8)
N

for 0 < s<so andx € R Let e{v € H; be the eigenfunction associated with the eigen-

value it (we assumel. to be sufficiently large) such that > 0 and max.gw e} <so.
According to Theoren8.1 and its proof, we may also assume that

w™ ()< —ef(x) andef(x) <wt(x),
for all x e RY, all negative solutionsv™ and positive solutionsw™ of (1.1). Define
Df ={ue H;:+tu 2@11}.

From the above discussion, all positive solutions and negative solutionk.p are
contained inDjlr and D}, respectively. We show in the following that under the condi-
tion liminf g0 f(x, s)/s > v1, suitable neighborhoods of these sets are invariant sets.
This result isi-dependent and holds only far large.

Theorem 4.2. Assume(V1) — (V3), (fo), (fa), and (f5). If liminf g0 f(x,s)/s > v1,
then there existy > 0 and A4 > 0 such that

A((DY)y) Cint(D)y) for all 0 < e<eo, A=A,
and

' (DY)e) Cint(DY)e) for all t >0, 0<¢<eo, and 2> A.

Proof. We only prove the result for the positive sign, the other case follows analogously.
For u € H; we denote

v=Au and v = max{ef v}.
Then disf (v, D}) <|lv — v1||; which implies

; 2
disty(v, D) - lv — vall; < v — vall%.
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Note thatvy = ef if vy # v. Since
lo—v1l? = (v—ef.v—v);
= / V(@ —ef)V (v —v1) + V(v — ef) (v — v1) dx
RN
= /RN (—A(v — ei) +V,(v— ei“)) (v —v1)dx
= /RN (f(x, u) — uiei) (v —v1)dx,

we have
dist, (v, D) o = val < [ (ued = frw) @ - vya.
RN
For the numbegg given in @.4), if u > sg, then

@ u)=fx,50) > (1f + 8)s0= (15 + d)ef.

Therefore, sinces <v1, we conclude that

dist,(v, D) v = vali < [ (uded = ) (o - vy

u(x) <50
Since f (x, u) > (uf + S)u for 0<u<so and f(x, u) > cou for u <0,
dist; (v, DY) - [lv — vl
< / (u{ef — G+ 5)u) (v — v) dx + f (u{e{ - cou) (v — v) dx
0<u(x)<so u(x)<0
A
=1+ I

Note that

L < (kiet — (i + o) (02— vy dx

/o< u(x) < pgef 0/ (Hg+90)

< (,ui-i-é) - A (ef—u)(vl—v)dx
0<u(x) < ppef(x)/(ug+96)
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and

I < (,Ui + co) (ef —u)(vy — v)dx.
u(x)<0

Denoting C = max{y; + 6. 1} + co}, we have
dist; (v, DY) - [lv — v1||,1<C/ (e} —u)(vy — v)dx := CE/, (4.5)
@/.

where

A
0" :={xeRV: u(x)gj'u—lei(x) .
pi+o

For any R > 0, we write

E’I:/_ (e{—u)-(vl—v)derf~ (ef —u) - (v1 —v)dx := Ef + E5.
©’NBg O'nB;

Since, on®” N Bg,

) 0

A 2

e —u>———ef =0p
/,tf—i—é

for someog > 0, there exists &1 = C1(R) > 0 such that

BL < [t =l o vl
i R

< 21 _ .

< CuBlef —ullZpte o llr = vll 2

< 21 _ ) )
< CiRlef —ulZl, v =il (4.6)

The factu(x) <ef(x) on @* implies
Z .
et —ull, pony = INf Jlw—ull,, g
1 LP(©%) weD? LP(©%)

for all u € H; and 2< p<2*. Then, by the Sobolev imbedding and.),

E{ <Ca(R) (disty(u, D))? - flvr — vl 4.7)
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From Lemma2.1, there existRg > 0 and Ag > 0 such that

A 2
E2 < ||€1 - u”LZ(@;ﬂB;O)”Ul - v||L2

< inf flu —w]
.

2(0*NRC ”Ul_U“Z
weD’ L2(0'NBj)

1 .
< detA(W DY) - [lvr— vl (4.8)

for all 1> Ag, whereC is the number from4.5). Combining 4.5—(4.8) we conclude
that

1 .
dist)(v, D7) <C <2Cdist,1(u, D7) 4 C2(Ro) (dist) (u, Dj))z 1) ’

for all v ¢ D and /> Ao. Therefore there exists ag > 0 such that if dist(u, D}) <
o, it holds

dist (Au, DT) = dist; (v, D}) < dist;(u, D).

Once again, the second conclusion follows directly frit@], via Lemma2.4. [

5. Proof of Theorem 1.1

In order to prove our main result Theorelnd, we need to use Ljusternik—Schnirelman
type minimax results. In general, results of this type do not give the nodal information
of the solutions. We need to have the order structure and the invariant sets of the
gradient flow from the previous section built into the minimax arguments. We need
to distinguish two casesd,, > d, andd, > d,. Though the results are similar for
the two cases, the minimax arguments used are quite different and the structure of the
invariant sets are also quite different. These two cases will be dealt with in Sections
5.2 and 5.3, with some technical preparations in Section 5.1.

5.1. A deformation lemma in the presence of invariant sets

Let us start with a more abstract setting. Consifler C1(X, R) whereX is a Banach
space. LeW be a pseudo gradient vector field loSuch thatV is odd if | is even, and
consider

4ot u) = —V(o),
dto(O, u) =u € X. } CRY
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A subsetW C X is an invariant set with respect wif, for any u ¢ W, a(t,u) e W
for all +>0. The following lemma is a variant dfi4, Lemma 2.4]

Lemma 5.1. Assume | satisfies th@S-condition and ¢ € R is fixed. Assumé&V =
OW Uint(W) is an invariant subset w.rto such thate(r, W) C int(W) for ¢+ > 0.
Definek?! := K.NW, K? := K.N(X\W), whereK, :={u € X : I'(u) = 0, I (u) = c}.
Let 6 > 0 be such that(k})s c W where (K}); = {u € X : dist, K}) < 6}. Then
there exists argg > 0 such that for any0 < ¢ < ¢p, there exists; € C([0, 1] x X, X)
satisfying

() n(t,u)y=ufort=0o0ru¢ I~ ([c—¢o. c+eol)\ (K2
(i) n(LITFUW\(K2)g) CITEUW and (L, I UW) C IFUW if KZ2=0.
(i) n(z,-) is a homeomorphism of X fare [0, 1].
(V) In(t, u) —u|| <0, for any (¢, u) € [0, 1] x X.
(V) 1(n(¢,-)) is non-increasing
(vi) n(z, W) c W for anyt € [0, 1].
(vii) n(z,-) is odd if I is even and if W is symmetric with respectOto

Proof. Due to the (PS) condition, we may choage> 0 such that

1"l 8o
L+l = 6

for any u € I=%([c — 0, ¢ + eol) \ (K¢)s. SetXy := I~([c — eo, ¢ + o) \ (K?)s. For
any fixed O< ¢ < ¢o, define Xz = I"1([c —¢,c +¢]) \ (K?)ps and

dist(u, X \ X1)

V) = dist(u, X \ X1) + dist(u, X2)’
Consider
d Y, u) VT, ) _
a0 T ey O

Then &(r, u) is well-defined and continuous 0R x X and we claim that(z, u) :=
&(ot,u) has all the properties in the lemma. (i), (iii), (v), (vi) and (vii) are easily
checked. For (iv) we note that
B
= H/ E (1, u)dt
0

To show (ii), we suppose by contradiction thatl,u) ¢ 1 U W for someu €
I8 U W\ (KCZ)35. Thenn(t,u) ¢ I U W for all 0<tr<1. We see thaw(t,u) ¢

1
@, u) —ull = H/ 0 (t,u)dt <.
0
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(K})s for 0<r <1 since (KHs ¢ W, andn(t,u) & (K?),s for 0<r<1 due to (iv)
andu ¢ (K2)zs. Thus, for 0z <1, n(t,u) € I ([c — &, c + &) \ (K225 U (Ko)s),
which implies, for 0<r <1,

11" (n(x, u)lI? _ 8eo
=1 d —————>—.
Vo oy =1 and e ol - 6

Then

1

1 l 2
%I(n(r, u))dr<c+s—/ Ol (n(z, w))||

I u) =1
(1, u)) (u)+/0 o 4Q+1I'(n(z, w)l)

dt <c—eg,

a contradiction. O

We shall also need the notion of genus (§19,21). Set
2, ={A C H)\{0}: A is closed andA = —A}

and lety(A) denote the genus o&, which is defined as the least integersuch that
there exists an odd continuous map A — "1, We refer to[21] for the following
properties of genus.

Proposition 5.2. Let A, B € X, and h € C(H;, H)) be an odd map. Then

() ACB=yA)<y(B).
(i) (AU B)<y(A) +y(B).
(ii)) y(A) <p(h(A)).
(iv) If A is compactthere exists anV € X, such thatA C int(N) C N and y(A) =
P(N).
(v) If F is a linear subspace ofi; with dimF = n, A C F is bounded open and
symmetricand O € A, theny(0rA) = n.

Recall in Section 4DF = {u € H; | +u>ef} with ¢ > 0 the first eigenfunction
satisfying maXef < sp andsp given in @.4). All positive (negative, resp.) solutions of
problem (.1) are contained inD;r (D;, resp.) and(Df)g are invariant sets it <ep.
We need the following result.

Lemma 5.3. For any p > 0, let B, := {u € H; : |lul;<p}. Then
dist; (3B, N (E1()*, Df UD} ) = 0.

Proof. Assume for the contrary, there exigts,) < Djf, (vy) € 0B, N (E1(A)*, such
that dist, (u,, v,) — 0. Then (u,, ei')i = (u, — vn,ef)z + (v,,,ei.);y — 0 asn — oo.
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But sinceu, > e}, we have
I _ A PN N2 4e 20
(u,,,el);'—,ul(un,el)Lz/ul N(el) x #0,
R

a contradiction. O

Remark 5.4. We note that the above result is not true Wh@ﬁf is replaced bfo.
That is, for anyp > 0, it can be proved that dis{dB, N (E1(1)*, P;"U P ) =0.

5.2. The proof of Theorem 1.1—the cake> d,

We consider the casé&, > d, first. In this case we haver > 1 since

Lo X, . X, s
V41 <V < liminf Mg lim supf( )
|s|—0 s Is|—0 S

< Vm+1-

We state the result more precisely here.

Theorem 5.5. Assume(V1)—(V3) and (fo)—(f5). Then there exists al > 0 such that
for all A> 4, Eq. 1.1 has at leastd,, —d,, (d,, —d,, — 1, resp) pairs of nodal solutions
having negative critical values provided>1 (n = 0O, resp).

The following two lemmas are standard and their special cases were proved in
[24,25]

Lemma 5.6. Assume(V1)—(V2), (fo), (f2), and (f4) with m # 0. Then there exist a
p > 0 such that for allA>0,

sup I, <O.
EnNoB,

Proof. By (f2) and (f1), there existo > 0, C; > 0, and p € (2, 2*) such that for
all x andu, F(x,u)>(vm + O)u?/2 — C1|u|P. Here 2 = 2N /(N —2) for N > 2 and
2* = +oo for N = 2. Foru € E,, the inequality|[u[|3 <v,lu|%, and the Sobolev
inequality imply

1
B < Gl = o +0) [ wtdr—cy [ ulrdx
2 . RN RN

~

2 p
ulls + Collully,
2 fluell? lluell’;

which gives the result. O
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Lemma 5.7. Assume(V1)—(V3), (fo), (f3), and (fa). Then there exists al > 0 such
that for all A> A4, dim E, (1) = d,, and

inf I, > —o0.
(En(A)t

Proof. By (f3), there existd > 0 andT > 0 such that foru|>T, F(x,u)<(vy41 —
26)u?/2. ChooseA > 0 such that for alli>A, ;1 >vap1 — 6 by Lemma2.2
Let u € (E,(A)* with 1>/ and denoteZ := {x : |u(x)|>T}. For anyR > 0, the
inequality [|u(|2 > s/, 4 llul?, implies

1 2
L) > Slul? -

1 =0
F(x,u)dx——CO/ uzdx—'ud"L/ u?dx
BrNZe 2 z

BGNZe 2

>

=

—llullf = C1(R) - %CO”M”iz(BC)-
214,41 K

Then using Lemm&.1 gives the result. [

Proof of Theorem 5.5. Throughout the proof, we fix @ sufficiently large such that
I, satisfies the (PS)-condition (Lemnfa3) and all other relevant results hold. By
Theorem4.2 we may choose ar > 0 small such that(Djf)S N (D;). = ¥ and
W = (Df)EU(D;)6 is an invariant set of the pseudo gradient flow. Recall that#nt
contains all positive and negative solutions. Fo« 2, ..., d,, definel’; :={Ae X, :
7(A)>j} and

cj:= inf supl;(u)
J ),
Ael'j Ans

where S := H;\W. For any A € X, with y(A)>2, we haveA N S # & (since, if
ANS =0, AcC W, buty(W) =1, a contradiction). Thus; for j =2,...,d, can be
defined.

First we assumel, = 0 and we considet; for j = 2,...,d,. As a consequence
of Lemmas5.6 and 5.7, —oco < ca<e3< -+ <cg,, < 0. We claim that ifc :=¢; =
Cjt1 = --- = cj4k for some 2 j<j + k<d, with k>0 theny(K. N S)>k + 1.
Since K2 = K. N S is compact, there exists a closed neighborhdbdn H; with
KC2 C int(N) C N such thaty(N) = y(KCZ). Without loss of generality, we may assume
N = (K2),5 with 6 > 0 satisfying(K}); c W. Then there exists ar > 0 such that
for 0 < ¢ < ¢o, there exists am € C([0, 1] x H,, H;) satisfying (i)—(vii) of Lemma
5.1 ChooseA € I'j such that

sup l; <c+e,
ANS
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Thenn (1, A\ (K2),5) C I5°UW and we claim

(e (),) <5
Otherwise,y (1 (1, A\ (K?),;)) >/ and

c=c¢j< sup ;< sup  [;<supl;<c—g,
n(LA\(K2)35)NS (15 fuw)ns L

a contradiction. Now,
J+k<y(A) < p(ANINt(N)) + (V)
< 9011, A\(KD)3)) + (KD
< Jj = 149(KD),
which implies y(K?)>k + 1. Since all the solutions irk? are nodal solutions, the
result is true in the casé, = 0.

If d,>1, we may consider alt; for j =d, +1,...,d,. By Lemmas5.6 and5.7,
—00 < ¢g,+1< -+ - <cg, < 0. The same argument as above works in this cadel

5.3. The proof of Theorem 1.1—the cake> d,,

In this case we have>1 and we prove the following result here which gives the
other part of Theorenmi.1

Theorem 5.8. Assume(V1)—(V3) and (fo)—(fs). Then there exists al > 0 such that
for all A> 4, Eq. (1.1) has at leastd,, —d,, (d, —d,, —1, resp) pairs of nodal solutions
having positive critical values providea >1 (m = 0, resp).

We need the following two lemmas which are generalizations of similar results in
[24].

Lemma 5.9. Assume(V1)—(V2), (fo), (f3), and (f4) with n # 0. Then there exists a
R > 0 such that for allA>0 and Bf := H;\Bg,

sup I; <O.
E,NB%
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Proof. By (f3), there existd > 0 andT > 0 such that forju|>T, F(x,u)> (v, +
S)u?/2. Letu € E, and denoteZ := {x : |u(x)|>T}. For anyR > 0,

1 1 N Vo + 0
L) < Zlul?+ =(co+ v +90) [ udx—" / W2 dx
2 2 Zc 2 RN

0 2 1 N 5 2
< =y Il CaR)+ Sco+ v+ 0Vl

this together with Lemma&.1 leads to the result. [

Lemma 5.10. Assume(V1)—(V2), (fo), (f2), and (f3). Then there exist a1 > 0 and
p > 0 such that for allA> A4, dim E,, (1) = d,, and

inf I, > 0.
(Em (A))LmaBp

Proof. There existd > 0 and C1 > 0 such thatF (x, u) < (V41 — 20)u?/2 4+ C1|u|?
for somep € (2, 2*). Choose/ > 0 such that forZ > A, iy 1 > vmy1— 6. Then for

2z A andu € (En(A)*,

/.
1 Hipr1— 0
L) > 5"”"3‘T/RN u? = Caljull7,

>

=

2 p
) lull — Collull;,
Mg, +1

which gives the result. [J
Proof of Theorem 5.8 We need to distinguish two subcases heredfj)>1 and (ii)
dy = 0.

Let us consider (i) first. Again, by Theoremh2 we may choose an small enough
such thatW := (Djf)g U(D;)e is an invariant set of the gradient flow and all positive
and negative solutions are contained in(W#y. SetS = H, \ W. We have to use a

different family of sets for the minimax procedure here. We essentially fo[tt®y.
Define,

G:={heC(BrNE,, H)) :his odd andh = id on dBg N E,},
where R > 0 is given by Lemmab.9. Note thatG # ¢, sinceid € G. Set

Ij:={h(BRNE,\Y):heG,Y X, andy(¥)<d, — j}



386 Z. Liu et al. / J. Differential Equations 214 (2005 358-390

for j € {2,...,d,}. From[19], fj possess the following properties:

(1°) I'j #0 forall je{2,...,d).

(2°) Tjyac@jforjef2. .. dy—1).

(3°) If ¢ € C(H;, Hy) is odd ands = id on dBg N E,, theng : I'; — T'; for all
jE2, ... dy) (ie.a(A) el if AcT)).

(&) If Ae r], ZeX, yZ)<s<jandj—s>2,thenA\Z e T;_

Now, for j =d,, + 1, ...,d,, we define

¢j:= inf sup’;.
Ael’j ANS

From [19, Proposition 9.23for A € fj with j>d, + 1,
AN OB, N (En(2)* # 0.

Sinced,, >1, by Lemma5.3, 0B, N (Em(A)*+ C 8. Thus, forj>d, +1 andA ¢ fj,
ANS #@Y, and from Lemmab.10 we conclude that

&> inf  I;za>0.
OByN(En (D)

Then from the definition of; and (2°) we have O< a<cg,+1< -+ <{q, < 0o. We
claim that if ¢ :== ¢; = --- = ¢4« for somed,, + 1< j<j + k<d, with k>0 then
Y(Kz N S)=k + 1. This also shows that eaaly is a critical value. Since & K,

and K? = K:N S is compact, we may choosd such thatK2 cint(N) c N and

y(KCZ) = y(N). If y(KCZ)<k we havey(N)<k. By Lemmab.1 there existe > 0 and
n e C([0,1] x H;, H;) such thaty(1, -) is odd, n(1, u) = u for u € "%, and

. (1, 14y W\N) CIiFUW.
We may assumeé — 2¢ > 0. ChooseA € fHk such that

supl;<c+e.
ANS

Then by (4°) above A\N € fj. As a consequence of Lemnm&9, n(1,u) = u for
u € 0Bg N E,, and we havej(1, A\N) e I'; by (3°). Then

c< sup )< sup I;<c—cg,
NLAN)NS (r5uw)ns
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a contradiction. Thereforg(K:NS)>k+ 1 and I, has at least/, — d,, pairs of nodal
critical points.

Next we consider case (i, = 0. We have to use a different invariant set since
0 is a local minimum. From Theorerdh.1, we may choose an > 0 sufficiently small

such that(Pf)a are invariant sets. Se¥ .= (PAI*),, U (P; ). and $* := H;\W. We
define
¢j:=inf supl,,
Ael; Ans*

for j =2,...,d,. We need to show that for anzyef"j andj =2,...,d,, ANS* £ 0
so thatc? are well defined, and5 >« > 0.
Consider the attracting domain of O i;;:

Q:={ueH, o(t,u)— 0, ast — oo}.

Note thatdQ is an invariant set. We claim that fot € fj with j = 2,...,d,, it
holds

ANS*NoQ £ 9. (5.2)

This proves bothd N $* 3 ¥ andc; > > 0, sincedB, C Q and infy,, 1, > infap 1;

>o > 0 by Lemmab5.1Q To prove 6.2), let A = h(Br N E,\Y) with y(Y)<d, — j
and j > 2. Define

={ueBrNE,:h(@u)eQ}.

Then© is a bounded open set withd®® and©® c Bg N E,. Thus, from the Borsuk—
Ulam theoremy(00) = d,, and by the continuity oh, 2(00) c 0Q. It follows that
P(OO\Y) > j, h(0O\Y) Cc ANJQ and thereforex(ANdQ)>j. Sincey(WNaoQ) =1,
which follows from (P;"), N (P;). N dQ = ¢, we conclude that

PANSTNIQ)Zy(ANIQ) —y(WNIQ) =1,

which proves %.2). Thu5c* are well defined forj = 2, ..., d, and O< a<c§<c* < -
<cd < o0. Proceeding as for the cask, > 0 we have ifc* = c* 1= c*

for 2<J <Jj 4+ k<d, with k>0 then y(K « NS>k + 1. Therefore A has at {east
d, — dy, — 1 pairs of nodal critical pomts The proof is similar and we omit it. Then
the proof for the case (ii) is finished, and therefore the proof of the main Thebrém
is complete. O
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6. Related results

Our method allows us to work on several other problems in the entire dpice
and we mention some results here with sketch of the proofs.

First we observe that additional information on the signed solutions will produce
stronger existence results. In cake> d,, > 1, we haved, —d,, pairs of nodal solutions.
The following result gives additional nodal solutions to those in Theoteinin the
presence of a pair of signed solutions.

Theorem 6.1. Assume(V1)—(V3) and (fo)—(f5). Assume that there exists a positive
solutionw (so —w is a negative solution If d, > d,, >2, Eq. (1.1) has at leastd,, — 1
pairs of nodal solutions withl,, — d,, pairs having positive critical values and, — 1
pairs having negative critical values.

Sketch of the proof Using Theoreml.1 we getd, — d,, pairs of nodal solutions
having positive critical values. Due to the presence of a pair of signed solutions we
can also getd,, — 1 pairs of nodal solutions having negative critical values. This is
done by modifyingf (x, #) to a new functionf (x, u) as in Section 3 and consider Eq.
(3.1 in Section 3. It is easy to check the conditions of Theoretare satisfied with

d, = 0 in this case, so applying Theoreinl we getd,, — 1 pairs of nodal solutions
with negative critical values. [

Next, we consider the following problem.
—Au+V@u= f(x,u), inRY, (6.1)

which satisfyu(x) — 0 as|x| — oo. The potential functiorV satisfies

(V) V e C(RVY,R) satisfies inf¥ > Vg > 0.
(Vo) lim|xso0 V(x) = +o00.

Under these conditions the linear operator is compact and has discrete spectrum only,
i.e., a(—A+ V) is given by O< v1 < v2 < --- with the dimension of each eigenvalue
dim(v;) < oo. Thus this is somewhat simpler case than the one we have considered.
We state the conditions and a similar result and leave the details to the readers.

We may assume the more general condition thes)

(Vor) There existsg > 0 such that for any// > 0

lim m({x eRY :jx — y|<ro} N {x € RV : V(x)gM}) —0.

[y|—>o00

Again, set

k
dy ::Zdim(w) and do:=0.
i=1
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Theorem 6.2. AssumgVy), (Vor), and ( fo)—(fs). Then Eq.(6.1) has at leastd,, —d,|
pairs of nodal solutions providedin{m,n}>1, and at least|d, — d,| — 1 pairs of
nodal solutions ifmin{m, n} = 0.

There is a version of Theore®1 for Eq. (6.1) too.
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