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ABsTRACT. This paper is concerned with the qualitative property of the ground state
solutions for the Hénon equation. By studying a limiting equation on the upper half space
Rf , we investigate the asymptotic energy and the asymptotic profile of the ground states
for the Hénon equation. The limiting problem is related to a weighted Sobolev type in-
equality which we establish in this paper.

Résumé. Nous nous intéresserons, dans cet article, aux propriétés qualitatives des fonc-
tions minimisantes (ou ”ground state solutions”) de 1’équation d’Hénon. L’étude d’une
équation limite dans le demi-espace supérieur RJ_*Y , nous renseignera sur ’énergie et les
caractéristiques limites des fonctions minimisantes de I’équation d’Hénon. Notons que le
probléme limite est en relation avec une inégalité de Sobolev pondérée que nous établirons
également.

1. Introduction

In this paper we investigate the Hénon equation
Au+|z|*u? =0 u>0 in
u=0 on 09, (1)

where Q is a bounded domain in RV. For o > 0,2 < p+1 < 2* := ﬁ—fz (in the case

N =1,2, 2* = +00), it is easy to show that

Vul?d
Q)= inf Jo|Vulide
u€Hg (D\{0} ([, |z|*|ulp+idz)>
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2 HENON EQUATION

is achieved by a positive function u, which by re-scaling gives a ground state solution of
(1). I3%(Q) is called the ground state energy, or the least energy. Numerical computa-
tions ([4]) suggest that when  is the unit ball B(0, 1), for some parameter « the ground
state solutions are nonradial. This was confirmed recently in [10], in which it was proved
that for each 2 < p+1 < 2* and N > 2, there exists a* such that for & > o* the ground
states are nonradial. In fact, they compare I*»*(B(0,1)) with another minimization
problem

fB(O,l) \Vul|?dz

I (B(0,1)) = inf —.
(5(0,1) weH (BON\ u(@)=u(lel) ([ ) [a|*|ulr+ide) 7+

It was shown that, if p € (1,(N +2)/(N —2)) and N > 2, for sufficiently large o > 0,
1“%(B(0,1)) < I"**(B(0, 1)).

More precisely, for N > 2, they showed that

N

: p—'H;’ rad,o
Jim () P ITE(B(0, 1)) € (0, 00),

and that for some ¢ > 0, as a = o0
1°(B(0,1)) < ca® Nt

Our main interest in this paper is about the asymptotic profiles of both the nonradial
ground solutions and the radial ground states (i.e., the shape of these solutions). This
is a natural question along the line of the study and has not been addressed at all. In
order to study the asymptotic profile of the ground solutions we need to develop finer
estimates on the ground state energy than those given above and to derive a limiting
equation for the problem, which is essential to locating the asyptotic shape of the ground
states. It turns out that the following minimization problem serves as limiting problem

for equation (1):

JInp(Q) = inf {[ \Vu|2dz ‘ / exp(—Bt)uP T dtdy = 1,u € H(Q)},
Q o
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where Q = (0,00) x RN=1, H({) is the completion of C§°(£2) with respect to the norm
[ul]? = [ |Vul*dz, and > 0 and N is the dimension. More precisely, we shall prove

that forany N >1and p > 1

N )%Irad,oz(B(O7 1)) — ‘SN—l‘(P_l)/(P‘i‘l)Jl’N’

im
a—oo o +
and that for any N > 1 and p € (1,2* — 1)

N N+2-(N-2)p

)T [l (B(0, 1)) = Jy .

Jim (s

Furthermore, through more delicate analysis, we find asymptotic profiles of the minimiz-
ers of 19:2(B(0,1)) and I"*%*(B(0,1)) as o — co. Roughly speaking, under suitable
transformations the minimizers of I%:(B(0, 1)) converge to the minimizers of J n(Q)
and the minimizers of I7%%(B(0,1)) converge to the minimizers of J; x(€). The pre-
cise statements will be given in Section 3 and Section 4. As a byproduct of our delicate
analysis, we show that the symmetry breaking also occurs for N = 1. In order to study
the limiting problems we need to first establish some weighted Sobolev type inequalities
in the half space Rﬂf . These inequalities should have independent interest of their own.
In recent years, extensive work have been done for analyzing the limiting profile of
least energy solutions of singularly perturbed elliptic problems including elliptic Dirich-
let, Neumann boundary value problems and nonlinear Schrédinger equations in RY .
Symmetry breaking of ground state solutions has been observed for some of these prob-

lems when the problems are radially invariant. Most of these problems have an associ-

ated limiting problem which are usually of the following form
—Au+u=f(u), nRY.

The existence and uniqueness of the ground state solutions for the limiting problems
are used to get information for the ground state solutions of the singularly perturbed
problems. For Hénon equation (1) we shall see that the appropriate limiting problem is
much more complicated. The analysis of the limiting problem will be done in Section
2. After getting information for the limiting problem we shall study the asymptotic

property of the ground state solutions of the Hénon equation (1).
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2. Limiting equations and a Weighted Sobolev type inequality

As we mentioned, by a suitable transformation of the ground states, we obtain, in

Section 3, the following limiting problem for equation (1).

Au + exp(—Bt)uP = 0,u > 0 in Q, (2)

u =0 on 99,

where 8 > 0 and Q = (0,00) x RV~!, We shall first study this equation in this section.
In fact, we shall work on more general situations and consider more general Q. Let
(t,y) € (—00,00) x RN=1, Let Q be a domain in (—oo,00) x RN~1. Throughout this
section, we assume that there exists L > 0 such that

QcC (—=L,00) x RN~

It is well known that there exists no solution for

Au+ uP =0, u>0in Q,

u =0 on OQ.

Moreover, for p € [1, (N + 2)/(N — 2)),
)2/(IJ+1)

( f(O,oo)xRN*1 QDpdedt
sup i
peCs ((0,00)xBY=\[0}  J(0,00)xRV-1 | Vep|?dydi

On the other hand, we have the following weighted Sobolev inequality.

Proposition 2.1. Letp € [1,(N +2)/(N —2)] for N > 3,p € [1,00) for N =1,2 and
B > 0. Then, there exists a constant C > 0, depending only on B,p, N and L, such that
for any ¢ € C§° (Q),

2

( / e><p(—ﬁt)<pp+1dydt)m <C / V|2dydt.
Q Q

Proof. Since exp(—ft) < exp(BL) in €, the case p = (N + 2)/(N — 2) comes from

Sobolev inequality.
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Let ¢ € C§° (Q) We see from integration by parts and Cauchy’s inequality that

t[zwm—&ﬂﬂ%ﬂﬂﬁzg/mem&%ﬂﬂ%ﬂw@ﬁﬂt

<5 [ exlpnet. 0+ g [ ew(-p)(otut) e

Then, it follows that

/ Z exp(~t) (0(0. )t < 5 / " exp(—Bt) (o, 1), (3)

Thus, by integrating both sides over R¥~1 in above inequality, we deduce that for any
p € C (),

/Q exp(—B0) (v, ) dydt < 75 / exp(—Bt) (04 (y, 1)) 2dydt
< ;2 exp(AL) / Voly, ) Pdydt. (4)

This proves the case p = 1. The case p = 2* — 1 with N > 3 comes from the Sovolev

inequalities.
From now on, we assume that p € (1,2* — 1).

Let N > 3. Since p+ 1 € (2,2N/(N — 2)), there exists s € (0,1) such that p+ 1 =

25+ (1 — 5)2N/(N — 2). Then, from Hoélder’s inequality, we see that

[ exp=0) o)yt
Q
< ([ exp(—ﬂt)gbZdydt)s(/ exp(_ﬁt)¢2N/(N_2)dydt) 1-s
Q Q
Sexp(ﬂL)([eXP(—ﬂt)gozdydt)s</~ S02N/(N_2)dydt)1_s,
Q2 Q

Then, by Sobolev inequalities, there exists a constant C > 0 that ¢ € Cgo(fl),

(p+1)/2
[ exp(=pt) (ol )7yt < € [ Vol dyit)
Q Q

Thus, the case of N > 3 is finished.
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For the case N = 1, we see that

Bs

expl—g o0 = [ =5 exn( g P () exn(— 5 s

2= 1) o 2p-1) T 2 —1) )¢ (s)ds.

Thus, it follows from Cauchy’s inequality and (3) that for some C = C(p, 3, L) > 0,

Je(t)[?

sup | exp( o
xp(———"
te(—o0,00) 2(p - 1)

B [T Bs > Bs )
< (2(p_ 1)) / eXp(_m)dS/_oo exp(—2(p_ )(QD(S)) ds

—L

e s [ e @02

2(p—1) —oo 2(p—1)
<c / (¢/(s))%ds

Then, for any p > 1, we deduce from (3) that for some C = C(8,p, L) > 0,

/ " exp(—B0) (p(0))7 e

pt * Bt

s eOr ! [ e=en)

< sup |exp(-

te(—00,00) 2(]7 -
o0 (p+1)/2
< C(/ (90’)2dt) :

For the case N = 2, we see that

(- Solet 1< [ ea-0n /20D,
exp(~5 0ol < [ exp(-5012E8) 1 B exp(-Dtyipty oyt

Then, multiplying each sides and integrating over Q, we see that

/QeXp(—ﬂt)(so(y,t)thdy < (/Qexp(—gt)Ww(y,t)ldydt)2

-l-g/ﬁexp(—gt)\vw(y, )|dydt/exp(—_t)|<p(y’ t)|dtdy.
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Replacing ¢ by ¢™ in above inequality, we deduce from Cauchy’s inequality that

/Q exp(— )

<([ exp<—§t>m|go|m—1|w\)2
8 / exp (=5 tymlo™ Ve / exp(~ 1)l
< [ exp(=5e ™D [ exp(= [Tl
Q
+7</Qexp( 'g)<P2(m_1)/fzexp(—§t)|v§0|2>%/fzeXP(_gt)‘Mm-

Thus, there exists C' = C(m, 3, L) > 0 such that for any ¢ € C§° (Q),

/Q exp(—ft)¢?
_é 2(m—1) 2
<c /Q exp(~5 1) / Yyl

([ e [ 1902)" [ expi-Zoelm

Then, if it holds that for some C = C(m,3,L) > 0

b

(/Qexp<—§t>|¢|m)2/"‘ < 0/{2 VP2, %)

and

(A:zexp(—gt)@2(m—l)>1/(m_1) < C/Q|V(P|2, (6)

it follows that for some C = C(m, 3, L) > 0,

([ exst-piem) " < [ v @

Note from(4) that (5) and (6) hold for m = 2. Therefore, we deduce by induction that

(7) holds for any m > 2. This completes the proof. [

We define H(Q) to be the completion of C§°(2) with respect to the following norm

lull = ( / Vul2didy) 2.
Q
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Then, from Proposition 2.1, we see that H(2) is a Hilbert space. We note that, due
to Sobolev embedding, H(Q) = Dg*(Q) is well defined for N > 3 and any domain
Q c RM. Proposition 2.1 assures that the space H (Q) is also well defined for N = 1,2
if there exists L > 0 such that Q C (—L, c0) x RV-1,

Now, we are interested in the existence of a ground state solution of (2). As we will
see in the following, the existence depends on the shape of 0. The following condition
(referred as E-condition later) is a natural one, in a technical reason, for the existence
of a ground state solution. The existence will be given in Proposition 2.3. We do not

know whether this condition is optimal or not(see Proposition 2.7).

Definition 2.2. We say that Q satisfies E-condition if there exists a fixed point y° =
(9,--+ ,y%_;) € RVN=1 such that for any (¢,y1,---,yn—1) € Q and sq1,---,sn_1 €
[-1,1],

(692 + s1lyr =901+ yRs + svoalyv—1 — YR ) €2,
or if for each T > 0, @ N ((—L,T) x RVN~1) is bounded.
Proposition 2.3. Letp € (1,(N+2)/(N —2)) for N > 3,p € (1,00) for N =1,2 and

B > 0. Suppose that a domain Q satisfies E-condition. Then, there exists a minimizer

u € H(Q) of the following minimization problem
Inp(Q) = inf {||ul? ‘ /~ exp(—pt)uP T dtdy = 1,u € H(Q)}.
Q

To prove Proposition 2.3, we prepare a lemma. We first consider an eigenvalue

problem
d?¢
e + dexp(—pt)p =0 on (0,00),
$(0) =0 (8)
¢ € H((0,00))
Let s = 242 exp(—4t) and w(s) = ¢(t). Then, it follows that
d?w 1
W—}-;ws—}—w:O. (9)
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Note that for some C > 0,
t oo
601 = | [ # (sl < Vil [ 190 < oV
0 0
This implies that for some C > 0,
lw(s)] < C(1+|log s|)1/2.

There are two kinds of solutions, Bessel functions of the first kind .Jy and the second
kind Ny, for (9). Since Ny(s) & logs near 0, it follows that w(s) = Jo(s). The Bessel
function of the first kind Jy(s) is given by Y > %(%)2” Let j; < j2 < --- be the
positive zeros of Jy. Then, it is well-known that

82

()2

Jo(s) = T2, (1 )-

Thus, we have the following lemma.

Lemma 2.4. The eigenvalues {\g n}5%2, of (8) are given by

(jn)*B°
4 bl

Agm = n=1,2---.

The eigenfunction ¢g . corresponding to Ag p is given by

exp(—gt)), t € [0,00).

2y/28.n

$p.n(t) = Jo( 3

Proof Proposition 2.3. Let {v,}, be a minimizing sequence of Jy 5(Q). Since H(Q)

is the completion of C$°(Q), we can assume that {v, }, C C°(Q). We take T}, T2 > 0

n)’ - -n

such that for each positive integer n,
supp(vn) C {(t,9) € Q| —L <t < Ty, |yl < T3},
and that for each i = 1,2, Tf < T4 < --- and lim,,_, T = co. Define

D, = (LT x{y e RN | |y| <T2}.
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When QN ((~L, T,}) xR¥ 1) is bounded, we can take larger 72 so that QN ((—L, T}) x

RN _1) C D,,. Then, we consider a following minimization problem

I, = inf {|Ju|)” ‘ / exp(—Bt)uPTldtdy = 1,u € H, \ {0}},
oD,

where H,, = H(} ’2((~2 N D,,). Since D,, is bounded, there exists a nonnegative minimizer
uy of I, for each n > 1. It is easy to see that I,, — JN’ﬁ(fZ) as n — 00.

When QN ((~L, T;}) x R¥N=1) is not bounded, from a Steiner symmetrization (refer
[7]), we can assume that u, (¢, y° + 2) is even with respect to each of the components of
z = (#1,...,zy — 1) and is monotone decreasing in each of the components of z. Then,

{un}n is also a minimizing sequence of Jy g(2), and lim,,_, o I, = Jn g(£2).

Moreover, we see that

Auy, + I, exp(—Ft) (u, )P =0 in QN D,,
Uy, > 0 in QN Dy, (10)

Up =0 on d(QN Dy,).
Note that

Auy, + I, exp(—BL) (u,)? >0 in QN D,

U, =0 on d(QN Dy,).

Then, since {||un||p2n/(v-2) }n is bounded for N > 3, from a uniform L —estimate [2,
Proposition 3.5], we see that {||un||re }~ is bounded for N > 3. For N = 1, it follows
that for some C > 0,
(1) = /tL o (s)ds < \/t+—L(/O: o (5) i Y ovi
For N = 2, we use the Green function on the upper half plane. Then there is a

constant C > 0,

X () + (v —y)? »
u(t — L,x) < C’/O /_OO log (=57t (@) exp(—0Bs)uP (y)dyds.
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Since {[;° [ exp(—Ps)(uy )P (y)dyds}, is bounded, from Holder’s inequality, it fol-

lows that for some C > 0,

(un(t — L, z))P*
<C / (log Ei +8) + (@ : y;2)p+1 exp(—ps)dyds

< et [ [ (10 ALY oy
(

4 +1
) %))p exp(—fs)dyds

= C exp(—pt) [ 10g(1+w) p+1 exp(—0s)dyds.
—t J—oo 5%ty

Note that log(1 + a) < a for a > 0. Thus, for some constant C' > 0 and ¢ > 0,

/ / 4§§i+yt) ))p+1 exp(—Bs)dyds
= 4t(s +t)

= log(1+ 50
/(—t,oo)x(—oo,oo)ﬂB(O,l) ( 52 + y2

At(s +t) Pt
+/ log(1+ ———) exp(—0s)dyds
(—£,00) X (—00,00)\B(0,1) ( 52 + y2 )

27r
/ / 4t(1~2+ t)))p+1exp(—ﬁr sin 0)rdfdr

(4t) p+1/ / (s + )Pt exp(—Bs)dsdy

))p+1 exp(—/0s)dyds

+ (4t)Pt1 /_1 /_:__ (s + t)P exp(—Ps)dsdy

+ (4t)Ptt /y|>1/00_t ((Sy—z t))p+1eXp(_ﬂs)d8dy

< Ct(1+t) + ottt / / (s + )P exp(—P3s)ds
—t Js=—t

< C(t(1+ )P exp(6t).
This implies that there exists a constant C' > 0, independent of n > 1, such that
un (t, ) < C(1+1)°, t>0. (11)

Having established some upper bounds we need an estimate from below for the L™
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norm. From Proposition 2.2 and the fact that

| VunPdade < LlunlB [ exp(-t) ()t
QND, QND,

we see that the set {||uy||Le }» is bounded away from 0.
Next, we consider the convergence of u, and we consider several cases. First, for

N =1, it is easy to see that

o0

lim exp(—pt)(uy )P dt = 0 uniformly with respect ton =1,2,- -
T—o0 T

Since {uy, }, is bounded in H, u, converges weakly to some u in H. Then,

/_ exp(—pt)uPTtdt = 1.

Q
This implies that u is a minimizer of Jy 5(Q).

For the case N > 2, we claim that for sufficiently large T > 0,
lim infsup{uy, (t,y)] — L <t <T,(t,y) € QND,} > 0.
n—00

Suppose that it is not true. Then, for any T" > 0,

lim inf sup un(t,y) = 0.
N0 L<t<T,(t,y)€QND,,
Taking a subsequence if necessary, we can assume that for sufficiently large T > 0,
lim sup un(t,y) = 0.
MO0 _L<t<T,(t,y)eQND,

Let (¢ 81 A 8 1) be a pair of the first eigenfunction and the first eigenvalue of

d2_¢ + Aexp(—pt/2)p =0 on (0,00),

dt?
$¢(0) =0
¢ € H((0,00))

satisfying that for ¢ > 0, ¢ ,(t) > 0, and limy_,o ¢s ,(t) = 1. From the estimate
29 2

(11) for N = 2 and and the boundedness of {||uy| L=}, for N > 3, we see that
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limy—yo0 exp(—2¢) (un (¢, y))P~! = 0 uniformly with respect to y € R¥~1. Thus, there

exists sufficiently large T' > 0 such that

Ady 1 + Lnexp(—Bt) (w) gy |
= ¢§,1 exp(—pt) (I,ut ' — exp(,@t/Z))\g’l)

<0 t>T.

7

From a comparison principle(refer [9]), we see that for each n =1,---,and t > T,

un(t7 y) < (bﬁ,l(t) max U""'(T’ y)/qbg 1(T)
2 {y|(T,y)eQ@ND,} 27

This implies that

lim sup  u,(t,y) = 0;
"0 (4 )eQND,

this contradicts that {||uy, ||~ }n is bounded away from 0. This proves the claim.
Now, taking a subsequence if necessary, we can assume that u,, converges weakly to

some u in H(Q) as n — oo. From the boundedness of {||tn||z }n, we see that for some

p € (0,1), {||un||c2.r}n is bounded. Thus,we can assume that u,, converges locally to u

in C? as n — oo. Note that lim,_, o I, = JN’ﬂ(Q). Thus, this u satisfies the following

equation

Au+ Jn 5() exp(—Bt)uP = 0 in Q,

u=2~0 on 9.

From the preceeding claim, we see that if Q) satisfies the first assertion of E—condition

in definition 2.2, for sufficiently large T' > 0,

lim inf max _ un(t,y) = liminf max wu,(t,y°%) >0,
n—roo te(_L7T)a(t7y)€QnDn n—00 te(_LvT)

and that if Q satisfies the second assertion of E—condition in Definition 2.2, for suffi-

ciently large T' > 0,

lim inf max Uy (t,y) = liminf max _ ug(t,y) > 0.
N0 _L<t<T,(t,y)EQ N0 _L<t<T,(t,y)EQND,,
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Thus, it follows that u # 0. Let

v = [ exp(—pt)uPtdtdy € (0,1].
Q

Suppose that v < 1. Then, taking w = v~ /@ty we see that

[ exp(—pt)wPdtdy = 1,
Q
and that

Aw + JNﬁ(fZ)”y(p_l)/(p"'l) exp(—Bt)w? =0 in €,
w>0 in fl,

w=20 on 9.
By integration by parts, we get

[ VwlPdidy = Jy 5(Qy @D/ @D < 1y ().
Q

This contradicts the definition of Jy g(€2). Thus, it follows that

/ exp(—pt)uP T dtdy = 1.
o

Since

/ |Vul?dtdy < lim inf/ |V, |2dtdy = Jn (),
Q n—00 Q

we conclude that u is a minimizer of Jy g(€2). This completes the proof. O

For our applications to the Hénon equation (1), we are particularly interested in the
case ) = (0,00) x RV~ In this case, we derive the following qualitative properties of

the minimizers of Jy g((0,00) x RV~=1).

Proposition 2.5. Let u be a nonnegative minimizer of Jy g((0,00) x R¥=1). Then,
(i) For N =1, u is a monotone increasing bounded function, and for any c € (0, 3),

there exists constants C > 0 such that

0 < lim u(s) —u(t) < Cexp(—ct).

S§—00
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(ii) For N > 2, for some xo € RVN~1, u(t,x) depends only on t and |z — xo|, and is
monotone decreasing with respect to |z — xg.

(iii) For N > 2, lim ;| u(t,z) = 0.

(iv) For N > 3, lim|(y z)|—o0 u(t, ) = 0.

(v) For N > 4, there exists C > 0 independent of t > 0 such that u(t,z) < m%

Proof. For simplicity of notations, let J = Jx g((0,00) x RN~1). First of all, we note

that

Au+ Jexp(—pt)u? =0, u > 0in (0,00) x RN~1

u=0on {0} x RV"1,
We prove (i) first. For N =1, we see that
¢ ¢
u(t) = / u'(s)ds < \/Z(/ (u'(s))%ds)/? < CV.
0 0
Denoting w(t) = u/(t), we see that
w” + pw’ + pJ exp(—pFt)uP " w = 0 in (0, 00).

It is easy to see that w(0) > 0, and that u is monotone increasing and w is monotone
decreasing. Since fooo w?(t)dt < oo, it follows that lim;_,o, w(t) = 0. Since u(t) < CV/1,

it follows that for ¢(t) = exp(—ct) with ¢ € (0, 3),
¢" + B¢’ + pJ exp(=pt)uP " ¢ < 0 in (T, 00)

if T > 0 is sufficiently large. By a comparison principle(refer [9]), we see that for some
C >0,

w(t) < Cexp(—ct), t € (0,00).

This and the monotonicity of u imply that for some C' > 0,

0 < lim u(s) —u(t) < Cexp(—ct), t € (0,00).

58— 00
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The proof of (ii) follows from using a rearrangement technique ([7]). We can show
the monotonicity and the symmetry properties of u for N > 2.

The decay property (iii) lim|;_o0 u(t,z) = 0 for N > 2 follows from an elliptic
estimate. The decay property (iv) lim|( 4)|— o0 (%, ) = 0 follows from elliptic estimates
and the fact that by the Sobolev inequalities for N > 3, ||u||z2n/(v—2) < co. Finally, for

N > 3, we consider a function

t
wﬂ(t7 "B) = Tl;ﬁl,;[(_g), )

where ¢g 1 is the first eigenfunction of (8) with the corresponding eigenvalue Ag 1. Then,

we see that for z # 0,

Avpg + exp(—Bt)uP " tpg = (uP 1 (t, 2) — Ag.1) exp(—Bt)p.

From above decay property of u, we see that for sufficiently large z € RYN~1, uP~1(¢, z) —

Ag,1 < 0 Thus, by a comparison principle(refer [9]), we see that for some constant C' > 0,

C

N-3°

u(t,z) < Cyglt,z) < 7]

This finishes the proof of (v). O

Finally, we close up this section with a symmetry property and a non-existence result

of positive solutions for equation (2) for more general Q.

Proposition 2.6. For N > 2, let u € H(2) be a solution of (2) satisfying

lim  wu(t,z) =0.

|(t,x)| =00

Suppose that for any (t,z) € Q, (t,y) € Q if |y| < |z|. Then, for some zo € RN=1, u

depends only on t and r = |z — x|, and % <0 forr#0 andt > 0.

Proof. We sketch the proof here since it is standard by now to show the symmetry
property of positive solution via a moving plane method [4]. Let zo € RV~1 \ {0}. For

A > 0,let Ty = {(t, )| (zo,z) = A}, and Ex = {(t,z) € Q| (xo,z) > A}. For (t,z) € Ej,
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we denote (¢, z*) the reflection of (¢, ) with respect to T and define uy (t, z) = u(t, z*).
Define A = sup{\ € R | E) # 0} € (—o0, 0]

Suppose that for A sufficiently close to A,
wy (t, z) = min{uy (¢, 2) — u(t, x),0} # 0.
Then, it is easy to deduce that

/ VusPdtde < [[pu? gy / exp(— ) (wy)2dtdz. (12)
Ey E

x
Note that for A = oo, limx_,0 [|puP || (g,) = 0, and that for X # oo, the first
eigenvalue —A on E) goes to co as A — A. Thus, the inequality (12) contradicts
Proposition 2.1. This implies that for A sufficiently close to A, wyx > 0 on Ej. De-
fine A\p = inf{\ € Rlwx > 0 on E)\} > —oc. Then, combining above arguments and the
Hopf maximum principle, we conclude that wy, = 0, that is, v is symmetric for the
reflection with respect to Ty,. Since it holds for any zo € RY~1 \ {0}, the symmetry

and monotonicity properties of u follow. [

As in the proof above, for zop € R¥N~1 and ) € R, we define let T\ = {(t, )| (xo,z) =
A}, and Ey = {(t,z) € Q| (xo,z) > A}. For (t,z) € Ex, we denote (t,z*) the reflection
of (t,z) with respect to Ty, and define E} = {(¢,2*) | (t,z) € Ex}. Therefore, we obtain

the following non-existence result.

Proposition 2.7. Suppose that there exists o € RN~ such that for any A € R with
E)x 7& ®7

E;\UE)\;Q.

Then, there exists no solution u € H(Q) for equation (2) satisfying lim(; z)|—oo u(t, )
= 0.
Proof. We sketch the proof here. Denote A = sup{\A € R | E5 # 0} and )\ = inf{) €

R | B} C Q}. From the fact that E} U E) G Q for any A € R with E) # (), we see that

A= —00.
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Suppose that there exists a solution v € H(Q) of (2) satisfying lim z)|—o00 u(t, ) =

0. Then, as in the proof of Proposition 2.6, we see that for A sufficiently close to X,
u(t, ) > u(t, z), x € Fj.

Then, since Ef U Ey g Q for any A € R with Ey # 0, by the same argument as in the

proof of Proposition 2.6, it follows that for A < A,
u(t, ) > u(t, z), x € FEj.
This contradicts that limq ;)00 (%, ) = 0. This proves the claim. [

3. Asymptotic profile of least energy radial solutions on unit ball

In this section, we consider the limiting behaviour of the least energy radial solutions,
i.e., the minimizers of I"®%(B(0,1)). We consider both the asymptotics of limiting
energy and limiting profile. Let Q = B(0,1) = {z € RV | |z| < 1}, and H,qq = {u €
Hy?(Q)|u(z) = u(|z|)}. We denote Jy g = Jn g((0,00) x RN=1). Then, we consider the

following minimization problem

Imed® = inf {/ Vu|*dz ‘/ x| *uP e = 1,u € Hrad}' (13)
Q Q

«

In [8], Ni proved that the above minimization problem has a positive minimizer u&_,

for 1 <p < (N+2+2a)/(N —2). Moreover, from the Pohozaev identity, we can show
that there is no solution of equation (1) with Q = B(0,1) for p > (N +2+2a)/(N —2).

This u%2? satisfies the following equation

Pu N-10u e
or? r Or

z|“uP =0 in u=0 on ON.

In [10], it was shown that for N > 2, limg_e0 (=) 51 I799:% € (0, 00). We will examine

i)

the exact values of the limits 7% and our analysis applies to N = 1 too. This analysis

in turn will be used to find a fine asymptotic behaviour of the minimizers u%%¢ for I"24:*

rad

as a — oc. We have the following asymptotic result for "% and u7%.
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Theorem 3.1. Let N > 1 and p > 1. Then

N
lim (

22 rrad,a _ | gN=1|(p—1)/(p+1)
a—00 04+N)+I S | Ji,n,

where |SN=1| is the volume of (N — 1)—dimensional sphere SN=1. For any r € (0, 1],

rad
du"air(r) < 0. Furthermore, under the following transformation
radip — (@N—1-2 N 1 44
t) = p+1 pH1 — t
v (e) = SN () P exp(- o)

v"84(t) converges uniformly on (0,00) to a minimizer of J1 N as o — oo,

rad

. 1 :
rad of Jrad g scaled function w%? = (17247144 is

For a nonnegative minimizer u s =
a least energy solution(a mountain pass solution) of (1) in the class of radial functions
H,.q. Proposition 2.3 implies that there exists a least energy solution (a mountain pass

solution) of wy g in H((0,00) x RN~1) of the equation

Au+ exp(—pt)u? =0 in (0,00) x RV™1,

u>0 in (0,00) x RV™1
u=0 on 0{0} x RN~1,

For the minimizer un g of Jy g = Jn g((0,00) x R¥~1), the least energy solution wy g
of (14-(N,()) is given by (J. N,ﬂ)ﬁu ~,3- Then, we have the following equivalent version

of Theorem 3.1 for w7?% and its energy.

Theorem 3.1-E. Let N > 1 and p > 1. Then

. N pt3 1 rad|2 1 a(, radyp+1
i P [ SV el

_ <1 1
= IS¥ [ 5wl - (=Nt ()
0

where |SN7Y| is the volume of (N — 1)—dimensional sphere S™N~1. Furthermore, the

following transformed solution

N 2
m) P 1wl (exp(—

wee(t) = |SMHP(

pry a0l
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converges uniformly on (0,00) to a least energy solution wi n of (14-(1,N)) as o — oo.
Proof of Theorem 3.1. It is easy to see that there are no local minimum points of
u”® in (0,1). Suppose that there exists 7o € (0, 1) satisfying u7*?(0) < u72?(r) for any

r € (0,79). Then , defining

rad _ { ut®(r)  for r € (ro,1),

w
@ ut®(rg)  for r € [0, 7o),

we see that
/ \Vug"d|2d:c >/ ‘V,wgad‘de
2 Q
and
/ |.’L“a(ugad)p+1dl' </ ‘l‘|a(w;ad)p+1d$.
& Q
This implies that
Jo Ve du Jo | Vurd?|2dz
2/(p+1)
(Jaleetugetyan)”™ ™ (Jy et

3/ (p+1)

this contradicts that ug"d is a minimizer of I"*%%_ Thus we see that uy 4 1s monotone
decreasing on [0, 1].
rad

We transform u[** as follows: for ¢ € (0, 00),

«

N
a+ N

(1) = |SN Y7 ( )7 ! (exp(—

oz—i—Nt))'

Then, direct calculations show

=1, a+ N pts [® N(N —2)t_ dv"ed
\V/ rad 2d — SN 11 p71 a +1/ _ a Zdt
/Q\uawc\ PR | e ) P,

and
o0
/ [ (urad)PH g — / exp(—Nt) (u794)P 1 dt.
Q 0
Thus, we see that for any p > 1,

2dt

(

N s > N(N —2)t. dvp
B9 rrada _ | GN—-1|(p—1)/(p+1) / - o
TN R A ey Vo e
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and
/ exp(—NE) (v )P+ dg = 1,
0

Moreover, it follows that

d N(N — 2)t dv*?
( xp(— ( )

rad\p __
7 ai N ) i )-I—Haexp( Nt)(vi*? =0 on (0,00)

rad t
lim va""(t)

_ .rad _
t—o0 dt = Vo (0) o O’

where H, = |SN_1|_(p_1)/(p+1)(a_‘_LN)%IMd’a. Since limg,_, o, €xp(— N(Of\_,l_ﬁ)t) = 1 uni-

formly on each compact subset of [0, 00), it follows that

lim ( N )%Irad,a < ‘SN_l‘(p_l)/(p+1)J1,N. (15)

a—oo o + N
This implies that limsup,_,, Ho < J1,N-

For sufficiently large o > 0, we see that

° dmd % N(N —2)t. dvree
/ exp(—=N1)| Do 124 < / exp(— NIV = )ty dve® s
0 0

a+ N dt
:Ha/ exp(—Nt)(vZ“d)pHdt < Ha||vgad||’£;1/ exp(—Nt) (v"*)2dt.
0 0

Then, from the inequality (3), we see that {|[v7.2¢|| = }4 is bounded away from 0.

'r‘ad

From now, we will show that {|[v5*¢||z }4 is bounded. Defining W, = “5—, we see
from the equation for v72¢ that
dt? a+ N dt
N(a+2) 1 N*(a+2)(N-2)
Ha Ty rad\p—1 ) = 0.
+ (PHaoxp(—= 570 () ainy ) Wa=0

Note that v7.24(0) = 0, lim;_,, Wy(t) = 0. From (15), we deduce from Cauchy’s inequal-

ity that for some constant C' > 0, independent of «,

t N(N —2)
ra,d —
W s)ds = /0 exp(——= 2o+ )

e \/%\/ exp(M ) — 1 for N > 2,
< CV't for N =2,
C for N =1.

5) exp(—
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Note that for any v, c,t > 0,
t 1
eXP(—Ct)’Y(eXP(;) -1)< texp((; —o)t).

Thus we see that

N(a+2)
a+ N

t) (,Urad)p—l .

«

N?(a+2)(N — 2)> o

lim (pHa exp(— (@t N

|(a,t)[—o0
It is standard to show that for each T' > 0, {||W4||z(0,7)} o is bounded. For a € (0, N),
we denote ¢(t) = exp(—at), Then, we see that for sufficiently large o > 0 and ¢ > 0,
d’¢  N(a—N+4)do

dt? a+ N dt
2 _
+ (pHa (=" Pyt - HEEEE= D g <

Then it follows from the comparison principle that for any given a € (0, N), there exists

some C > 0, independent of o > 0, satisfying
W (t) < Cexp(—at), t>0. (16)

Then, since v794(t) = [

o Wa(s)ds, it follows that {||v5*%||L }4 is bounded, and that for

any a € (0, N), there exists some C > 0 satisfying

lim v7%¢(s) — vl (t) < Cexp(—at), t>0. (17)
S§—00

Now, from the elliptic estimates ([5]), we deduce that for each T" > 0 and v € (0, 1),
{|U(7;ad‘c2»’7(0,T)}a is bounded. If liminf,_, . ||vgad||Loo((0,T)) = 0 for sufficiently large

T > 0, from the boundedness of {||v7%¢|| 1« } 4, it follows that

lim inf/ exp(—Nt)(v72)PH1dt = 0;
0

a—r 00

this contradicts that for any o > 0, [ exp(—Nt)(v52?)Pdt = 1. Thus, we deduce

that for some H € (0,J1 n], the solution v7%? converges in C?2 (0,00) to a solution

loc
v € H((0,00)) of

d2
Es + Hexp(—Nt)vP =0, v >0in (0,00)

v(0) = 0.
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Since fooo exp(—Nt)vP*Tldt = 1, it follows that H = fo 212dt > Jy,n. Therefore, it

follows that

‘m )%Irad,a > ‘SN—I‘(p—l)/(P‘*‘l)Jl N-
a—o00 o + B ,

Thus we get
N

m ( ypit [rade — | GN=1)e=1/(p+1) 7, .

a—o00 (Y
Moreover, from (17), it follows that v7%? converges uniformly to a minimizer of Jy n.
This completes the proof. [

4. Asymptotic profile of least energy solutions on the unit ball

In this section, we turn to the least energy solutions of the Hénon equation (1). We
will study both the asymptotic energy and asymptotic profile of the ground states, Let

us consider the following minimization problem
190 = inf {||ul? ‘/ |z|*uP T de = 1,u € Hy?(B(0,1))}. (18)
Q

For p € [1,(N + 2)/(N — 2)), there exists a positive minimizer u2" of (18). This u2!

satisfies the following equation

Ay +

>0 in u=0 on O

When N > 2, for z € RY | we take polar coordinates z = (r,6) with r = |z| € [0, 00),0 =
z/|z] € SN~! and denote u(z) = wu(r,f). For the sake of convenience, we denote
SN-1 = «tNGN-1 For each y € RV~ = RV~! x {0} C RV, there exists a unique
Ya(y) € SETIN{(0,- -+, 0, %%)} such that t(y)va(y) +(1=t(y)) (0, - - -, 0, 2F¥) = y for

some t(y) > 0 depending upon a. Then, the map (1o) " : S¥=2\ {(0,---,0,2t¥)} —

RN~ is a stereographic projection. Also when N > 2, by a rearrangement technique
([7]), we can assume that u%(z) = w3 (g-z) for g € O(N —1)® I C O(N) (i.e.,
u is radially symmetric with respect to the first N — 1 variables), and that for fixed

€ (0,1), “”(r 0) decreases strictly as |6 — (0,---,0,—1)| increases. If N = 1, we can

assume that & (O) > 0.
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Then, we have the following results on the asymptotic behaviours of the least energy

IS all and the minimizer ua”

Theorem 4.1. Let p € (1,2* —1). Then

N Nt2-— (N 2)p
li Fs Iall a_ g .
i Ay 2 NN

Moreover, the following transformed solution

(ot

)V @ ugl (exp(— o ¥51), giwYaly)  for N >3

+
Vi) =1 (G0 u em(-5h1), 3hay)  for N =2
()Y@ Dyl (exp(—=t7))  for N =1

with t € [0,00),y € RV~ converges to a minimizer of Jn,N uniformly for N > 3 and
locally uniformly for N = 1,2 as a — oo, And, for N = 1, the following transformed

solution (=1 pan ) )L/ (P Dy all(— exp(—o%’_l)) converges locally uniformly to 0 as « — 0.

For a nonnegative minimizer 42 of T2  a scaled function w2 = (I2 “”)p Tyl is a
least energy solution(a mountain pass solution) of (1) in the whole class of functions
in Hy;®(B(0,1)). Then, we have the following equivalent version of Theorem 4.1 as for

wr® and its energy in Theorem 3.1-E.

Theorem 4.1-E. Letp € (1,2* —1). Then

N —(N-2)p
lim ( ) / |vwa”\ — |z (WP g
B(0,1) 2

1 1
- v/ 2 _ —Nt Pt
/0 2| wN,N| P+l exp( )(WN,N)

p+1

for some wy N being a least energy solution of (14-(N,N)). Moreover, the following

transformed solution

() T wil (exp(— Ry t), Ay valy)  for N 23
a — _2 a
Wall(t’ y) - (aiQ)p_lwall(eXp( a+2t) a—|—2y) fO’I" N =2
(a57)7 Twa(exp(—557))  for N=1
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with t € [0,00),y € RN~ converges to wn,n uniformly for N > 3 and locally uni-
formly for N = 1,2 as a — oo, And, for N = 1, the following transformed solution

(%_H)Z/(p_l)wg”(— exp(—a%rl)) converges locally uniformly to 0 as o — oo.

Proof of Theorem 4.1. We take polar coordinates x = (r,0) with r € [0,00),0 €

SN-1 and denote u(z) = u(r,6). We first consider the following transformation

N N

a+ N )
a+N a+ N

N

vall(t, ) = (T )TN Bl exp ?).

where t € [0,00) and ¢ € SV~1. For the sake of convenience, we denote d,o the volume

element of SN 1. Then, from some direct calculations, we get for N > 2

Iall,a :/ |V’U,glll‘2d$:
Q
all

a4+ N Ny2—(N—2)p N(N — 2)t ( ov 2 1
==t — Ya + |Vg v? )dtd )
( N ) /(0 00)xSa’ 1exp( a+ N ) | Vsava o7

- / [ ()P g — / exp(—N1) (08P dtd o,
Q (0,00)xS& !

N42— (N—2)
where Vg, is the gradient on S5 ~'. Thus we see that K, y = I8 (No)™ »ir :

a+N
020t N(N —2) vt N(a+2)t
a a A N1 all K _ allx\p _ 1
Ot2 a+ N ot + Sy Vo T+ a,N exp( a+ N )(va ) 0 ( 9)

in (0,00) x S, and v2 =0 on {0} x SY¥—1. A direct computation shows that (19) also
holds for N = 1.

For each ¢ € C$°((0,00) x R¥~1) we define a function w, € C§°(B(0,1))

(°F
We (r,0) =
(r,0) { (ot

Then, since ¢ € C$°((0,00) x RNY~1) it is not difficult to deduce that

)N/(P‘l'l)(p(_% logr, (q/)a)_l(%e)) for N > 2
)N/(P+1)(p(_—a';[N logr) for N =1.

Jo |Vwa|?dz
2/ (1)
(fQ |$|O‘|wa|p+1da:) g
a0t N s J(0.00)cRv P NP (19212 + 194012 )dtdy + O(2)
1

= (
N 2/(p+1)
(Jiooopetes s exp(=NOleir+dtdy + O(2))
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as a — oc. Furthermore, since ¢ € C§°((0,00) x RVN~1), it follows that

Ji0.00y xR -1 €P(— 0T [ 5212 + [V 2dtdy + O (L)

2/(p+1)
(f(O,oo)xRN—1 exp(—Nt)|p|Ptidtdy + O(é))

f(O,oo) x RN—1 |V¢‘2dtdy

( f(O,OO)xRN—l exp(—Nt)|p[Ptidtdy

lim

a—r 00

)2/(p+1) '

This implies that

N Nt2-— (N 2)p
li et < g 20
aingo(a-i—N) N,N- (20)

Next, by a similar argument as in the proof of Theorem 3.1, we deduce using (3)
that for N > 2, {||[v2¥||z~}q is bounded away from 0. For N = 1, since v3(t) =

(a+ 1)P_T11ug”(exp(a_—:1)), we see that

d t dyl
%(exp(aﬂ) Zt )+I“lla(a+1) P exp(—t) (0P =0 on (0,00),  (21)
and that
d all t duW 0 1
0¥ (0) = 0, lim exp( ) Ya_ () = o 0) -
t—o0 a+1 dt dx (a + 1)m
We assumed that dﬁ” (0) > 0. Then, since %%”(:U) < 0 for |z| < 1, the unique

maximum point of u2? is located in [0,1). From Theorem 3.1 and (20), we see that

all

all js not symmetric, that is, u2!(z) # u®!(—x) for some = € (0,1). Thus, from the

u

uniqueness of a solution for the initial value problem of ordinary differential equations,

dqﬁu (0) # 0; then dqﬁu (0) > 0. Multiplying v2 on both sides of (21)

and integrating by parts, we get

o t dvdlt |2
/0 o +1)‘ dt
> t | dodit2 du®(0) 1
By _
0 a+ 171 dit dz (a4 1)7+1

_ e 4 1)~ / exp(—t) ()P dt.
0

dvg" (t)
dt

- t o\, all
dt — tl_lglo exp(a—H)va (t)

dt +
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Then, it follows that

0o d,Ua,ll 2 0o d,Ua,ll
exp(—t) ‘ 2| dt < / ‘ a
/0 dt o | dt

00
< Iall,a(a+1)—5—1‘3”1)3””1[7;01/ exp(—t)(vg”)2dt. (22)
0

dt

2 o0 £ dvoll 2
dt < ‘ o
= /0 xp( )|

Then, from (3) and (20), we deduce that for N = 1, {||[v2¥|| L} is bounded away from
0. Prior to proceeding further, we prepare some lemmas.

We consider the L* bound first.
Lemma 1. For each N # 2, {|[v¥||1=}o is bounded.
Proof. We prove the claim for the cases N > 3 and N = 1 separately.

Let N > 3. First of all, we note that for U, = (19:@)1/(p=1)yall

AUy + (Ug)? >0, Uy>0 inB

U,=0 ondB.

Then, by an uniform estimate [2, Proposition 3.5], we see that for N > 3 and some

C > 0, independent of «,

4/(N+2 N—-2
[Uallzoe < Cl|Uq|| o022,

Thus, from the Sobolev inequality and (20), it follows that for some C' > 0,

N
||ua,ll|| (Iall,a)—l/(p—l)”UO[”Loo < C(Iall,a)m—ﬁ < C(Ol+ )N/(P-I-l).
N

Thus, for N > 3, {||[v3&||p= }« is bounded.

Let N = 1. Defining W, = dt”, we see that for K, 1 = 9% (a + 1) _1(91::13)’
W,  a+3dW, a+2 a+2 I
«a o’ K, _ (v2 P_l)Wa =0
a2 a+1 dt ((a+1) + Kagpexp(=2m=1)(va’)

and
t 1 dud(0)

Wa(0) >0, lim Wa(t) = — lim exp(————)———— -

= 0.
t—oo t—00 a+1
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As in Theorem 3.1, we deduce that for any a € (0,1), there exists some C > 0, inde-

pendent of a > 0, satisfying
Wy (t) < Cexp(—at), t>0.

This implies that

C
Z, t>0.
a

t
vl (1) = / We(s)ds <
0
This completes the proof. [

Lemma 2. For N = 2, there exists a constant C' > 0, independent of o > 0, such that

.

2pt ) a4+ 2 a4+ 2

va'(t¢) S Coxp(—7), t>0, ———m <<

Proof. Let N = 2 and K, 2 = I“ll’a(%ﬂ)ﬁ, Then, the v satisfies the following

equation
0%l §Zyall I a+2 a+?2
_ all\p _ : _
912 + 3y + Ky 2 exp(—2t)(v3") 0 in (0, 00) x ( 5Ty )

o all 9 9

g; =0 on(O,oo)x{—a;_ 7T,a—2}_ m}

2 2

v =0 on{O}x(—a;— W,a—; ).

Let T > 2, and ¢ a smooth function such that

for \/(t—-T)2+y2<1

for \/(t—-T)2+y%2>2

P(t,y) = {

all

2" in the followings.

and 0 < ¢ < 1 on RY. For the sake of convenience, we denote v = v
Then, for any o > 0, multiplying v2**t1¢? to above equation for v and integrating by

parts, we deduce that

/ (Voo 2dtdy

< /U2a+2|v¢|2dtdy + Ky 2(a+1) /exp(—2t)v2°‘+2vp_1¢2dtdy. (23)
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Denoting w = exp(—%)vgb%, we see from Holder’s inequality that for any K > 0,
242, p—1 ;2 -1 2L\ 9aq2 2
exp(—2t)v vPTr dtdy = | wPTexp(——)v ordtdy
p

p—1
< ( / exp(—2t)vP$? dtdy)
{(t:y)|w(t,y)>K}

2t
+ KP7t / exp(—g)v2a+2¢%dtdy (24)

3|

! (/exp(—2t)vp(2a+2)¢2dtdy>

It is easy to see that
exp(—2t)vP p?dtdy

Frs) 1)t 2(p41 FES)
PFI (/exp(_2w)vp+1¢ = )dtdy> P
b

/{(t,y)IW(tyy)ZK}

< |{(t.)w(t.y) = K)

<[t = K77 ([ o2t eRanay) ™ (29

and

2(p+1)

WPt ™ 2 dtdy

w ~0+1) [ (g P T
(i) = k) < K0 [ep-2

< K~+) /eXp(—Zt)Up+1¢2dtdy.
Thus, it follows that
1
/ exp(—2t)vPp?dtdy < —/exp(—2t)vp+1gb2dtdy. (26)
()l (ty)>K} K
Combining (20),(23-6) and Proposition 2.1, we see that for some C' > 0, independent of

a, ¢ and v,

(/exp(—2t)vp(2a+2)(b2pdtdy);

2
< C/v2a+2|V¢|2dtdy—|——I—C(a—l-l)Kp_l/exp(——t)v2a+2¢%dtdy
p

p—1

1 > 1
+Cla+ 1)<E /exp(—2t)vp+1d>2dtdy> (/exp(—2t)vp(2°‘+2)q§2dtdy>

We take K > 0 so that

p—1

C’(a-l—1)(%/exp(—2t)vp+1¢2dtdy) "=1/2.
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(a+N)=w

Then, since [ Ny . [ exp(—2t)vPTldtdy = 1, it follows that
_(latN)x

(/exp(—2t)vp(2a+2)gb2pdtdy>E
<20 / V22|V | 2dtdy
-1 2 2
+ (2C(a+ 1))1_p</exp(—2t)'up+1¢2dtdy)p /exp(—;t)v2a+2q§5dtdy
< 20/1}20‘+2|V¢|2dtdy
1— 2t 2a+2 42
+ (2C(a+1))7? exp(—z)v v didy.

We take a smooth function ¢; such that

1 for/(T—t)2+y2<1+27°
0 for /(T —1)2+y2>1+2"F!

and 0 < ¢; < 1,|V¢;| < 2¢FL. Then, substituting ¢ and 2+ 2 by ¢; and (p + 1)p*~!

QSi(ta y) = {

respectively in above inequality, we see that

, 1
(/ exp(—2t)vpz(p+1)dtdy) Y
B((T,0),1+27)

< 204" exp (2T + 4)/ exp(—2t)vpi_1(p+1)dtdy
B((T,0),142i71)

1 i1
+(20(a+1)""Pexp(E_2 (2T + 4)) / exp(—2t)0P " @+ dtdy.
b B((T,0),142¢—1)

Then, we deduce that for some D > 0, independent of 7 and T > 0,

(/ eXp(—2t)Upi(p+1)dtdy) P (p+1)
B((T,0),1+2%)

: 1 h
<Dexp(2T ———) / exp(—2t)vP T dtdy
;pﬂ_l(l?-i-l) ( B((T,0),2) )
< Dexp(2T 2p 1).

Then, taking ¢ — oo in above inequality, we see that for some D > 0,

v(T,0) < Dexp(2T—2—), T >2.
P

-1

This proves the claim. [
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Lemma 3. Let N > 3, and let Ay := lim;_, o0 v¥ (¢, ¢). Then limy_s00 Ag = 0.

Proof. Denoting U, = (19:2)1/(P=1)yal we see that
AU, + |2|%(Uy)? = 0 in B(0,1),

and that
/ 2| (Ua)P T () dx = (192) @D/ (=1,
B(0,1)

Let G(z,y) be the Green function of —A on B(0,1). Then, we see that

Ua(z) = — /B oy GO )

Note that G(z,0) = C(1/]z|¥~2 — 1) for some C > 0. Applying Hélder’s inequality, we
deduce that for some constant C' > 0,

1/(p+1) /(p+1)
Ual0) < 0 / (G, Oy elda) / o[ (U )"
B(0,1) B(0,1)

< Cla+ C)—l/(p+1)(Iall,a)p/(p—l).

Thus, it follows that

N N
lim v2%(t, ¢) = ( YN/ @D att gy < cpotta )N/ B+ ()

t—00 a+ N a+ N
< o@ N e g @ N e
N
Since =2V=2)  ( for p>1and N > 3, the claim follows. [

pF1
Lemma 4. Let N > 3. Suppose that there exists T, > 0 satisfying limy_yo0 T, = 00

and limg_ o0 SUP ¢ gV -1 v¥(T,, ) = 0. Then, it follows that

lim sup{ve(t, ¢)|t > Ta,p € ST '} =0.
a—r0o0

Proof. Let (¢ N1 A %’1) be a pair of the first eigenfunction and the first eigenvalue of

d2
FZ) +Xexp(=Nt/2)¢ =0 on (0, 00),
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satisfying that for ¢t > 0, qb%’l(t) > 0, and lim;_, gb%,l(t) = 1. Note that %t(t) > 0 for
N+2—(N—2)p

t>0.Let Ko v = I“”’O‘(M_LN) »#1 . From the boundedness of {|Jv3||px}, for

N > 3, we see that for sufficiently large T' > 0,

N(N - 2) N(a+2)t, wper
(e —— Gy a)etAsy-16y, + Kan eXP(_w)(%”)p Yon
N(a+2)t e N(a+4- N)t
< ¢n, eXP(—W)(Ka,N(Ua”)p ! — exp( %0 + 2N Ay 1)
<0 t>T.

— Y

From a comparison principle(refer [9]), (19) and Lemma 3, we deduce as in Proposition
2.3 that that

lim sup{v*(t, qﬁ)‘t > Ty, € SN} =0.
a—r0o0
This completes the proof of Lemma 4. [

Now we consider the limit of v%". Note that Jo T)XSN—l(Ugll)p+1daO'dt < exp(NT)
for each T' > 0. Then, from elliptic estimates[5], we deduce that there exists v € (0, 1)
such that {[v3"]0s. (0. ryxs-1)}e i bounded for any T' < oco. Thus, for some K €

[0, Jn.n], va(t,y) = v (L, 14 (y)) converges in CZ, to some w satisfying

Aw+ Kexp(—Nt)w? =0 in (0,00) x RV~! (27)

w=0 on {0} xRV7!,
Furthermore, it follows that

/ \Vw|?dtdy < Jy n and / exp(—Nt)wPtdtdy < 1.
(0,00)x RV -1 (0,00)x RV—1

Then, we see the following result.
Lemma 5. For each N > 1, w > 0 in (0,00) x RN~=1.

Proof. To the contrary, suppose that w = 0.

First, consider the cases N > 3. From Lemma 1, we see that

Nt

. all
Jim {f exp(=—-)v5" | Lo ((0,00) x50) = 0-
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Then, for sufficiently large o > 0 and N > 2, we see that

Nt o all
/(0 s O (T Vs P e
yO0) XDy

N(N - 2)t Ol )
< - @ all |2
- /(o,oo>xsgleXp( a+N )(| o | tIVsaval )dtdaa

= Ka,N/ exp(—Nt) (v¥) P dtd,o
(0,00)x 85"
Nt oo N .
< Kq Nl eXP(_—)('Uall)p 1||L°°((0,oo)><5a) / exp(——t) (’Ua”)2dtda0',
2 (0,00)x S 2

_ ralla(agNyMA2= V=2 _ _ _
where K, v = I*"*(95)"  #F . On the other hand, integrating both sides of (3)

on S, with respect to y, we see that for some C > 0,

N
/( | PG DO s
0,00) XSy

Nt/ Ovelt
<C exp(—) (|72

24 |Vg, vol 2)dtdaa.

Since limy—y00 Ko, v < Jn,n, this is a contradiction.

all
Secondly, consider the case N = 2. Note that a function ¢ = 63;" satisfies

2

N N
Ay + K, 9 exp(—2t) (Ug”)f’—lzp =0 in (0,00) X (_a X/. , a; )
a+N o+ N

=0 on 9((0,00) x (— N TN m))

It is obvious that

a+N o+ N

Jim sup{(¢, y)ly € (———m, ——m)} =0.

From Lemma 2, we see that

. _ all\p—1 _a+N a+N

Jim sup{exp(=24)(v5")" " (4, 9)ly € (= ——m —x— )}

— Cp+ 1t aiyp-1 a+N _ a+N
_tEI?oSUP{eXP(_pT)(UO‘ Pt y)ly € (= N TN m)}

= 0.
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Then, it is standard to see from elliptic estimates(refer [5]) that {||1||c2} is bounded.

Then, by integration by parts, we see that

il 2 il l\p—1,,2
/ / |Vy|“dtdy = Ka,z/ / exp(—2t) (v2" )P~ pdidy < oo.
0 J-oxfn 0 Joeogfn

Thus, it follows that ¢ € H((0,00) x R). Moreover, since
o petN g
[ ezt vy
0 —#w

a+ N
(2p+ Dt anvp1 /Oo/ N l 2
< _EPT (a1 — .
< Nesp= Dyt o [7 [ exnt vt

it follows that

[ee) O‘TVNW
[ ], vy
0 - #ﬂ'

(2p+ 1)t
p+1

< Kol exp(—=———=) (vg" )P~

Vg [F2 ——)¢2dtdy

Note that limy o0 Ko2 < Jao and limg e ||exp(—%)(ug”)10—1|| L = 0. This

contradicts (4).

Finally, we consider the case N = 1. As in (22), we deduce that

oo d,Uall oo
<
J, et Gl [ en |

t _ oo
< Kaallexp(- eI [ exp(—) (e ar

d,Uall

Since w = 0, limg 00 Ko1 < J1,1 and {|[v2!]| L }4 is bounded, it follows that

(s34

. l all\p—1 _
lim Kol exp(~0) (03P e = 0.

This contradicts (4).
Therefore, we conclude that w > 0 in (0,00) x R¥N=1. The proof of Lemma 5 is

finished. O

If K =0 in (27), the limit function w is harmonic. Then, it is easy to see that w = at

for some a > 0. This contradicts that fooo fRN—l |Vw|dtdy < co. Thus, we have K > 0.
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Now, let v = [;° [py—1 exp(—Nt)wPt1dtdy € (0,1] and W = v~/ ®+Dy. Then, we see

that [;° [Rv-1exp(—Nt)W?+ldidy = 1, and that
AW + K®~D/ ) expy(~NH)WP =0  in  (0,00) x RV~
This implies that [J° [gy_1 [VW |?dtdy = Ky®~D/(P*1)_ Thus, it follows that
KA®=D/(p+1) > JN.N-

Since Jy n > K by (20) and K > Ky®=1/(r+1) it follows that K = Jy nx and v = 1.
Therefore, the function w is a minimizer of Jy n, and

N  Ny2-(N—2)p
lim 19*(——)" »+1 = Jnn.
a—00 a+ N ?

To complete the proof of Theorem 4.1, it suffices to show that V2! (defined in the
statement of Theorem 4.1) converges uniformly to w for N > 3. It is standard to
see that for each T > 0, limyy| q—o00 V¥ (¢,y) = 0 uniformly for ¢ € (0,T). Note that
limg_y o0 SUP e gV -1 v (T, ¢) < w(T,0). Then, since lim;_, sup, cRv-1w(t,y) = 0 for

N > 3 (Proposition 2.5), by Lemma 4,

lim sup V2% (t,y) = 0.

t—o00,a—00 yERN—l

Thus, V2 (t,y) converges uniformly to w for N > 3. For the convergence of v2h~ =

(%H)l/(p-f-l)ugll(_ exp(_%ﬂ)), we note that

[e%e} e’} 1
1:/ exp(—t)wP*! = lim exp(—t)(v3")Pdt = lim / | (udt )P+ da
0 0

a— 00 0 a— o0
and
1 [e’e] [e%e]
/ \$|a(ugll)p+1d:v:/ exp(—t)(vg”)p“dt—l-/ exp(—t)(vgll’_)p+1dt.
-1 0 0
Thus,
lim exp(—t) (v¥h7)PTLdE = 0.
a—0o0 O

all,—

Then, the convergence of v2

comes from standard elliptic estimates [5]. This com-

pletes the proof of Theorem 4.1. [J
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5. Some final remarks

First, as a corollary of Theorems 3.1, 3.1-E, 4.1 and 4.1-E, we obtain symmetry
breaking of least energy solutions of the Hénon equation (1). For N > 2, this was

proved in [10].

Corollary 5.1. For N > 1 and p € (1,2* — 1) fired, a minimizer u® of I* and a

all
«a

least energy solution w®"' of (1) is not radially symmetric if a > 0 is sufficiently large.

As it can be seen in Theorems 3.1 and 3.1-E, the behaviour of u7%¢ and w’%® as

all

a — oo is rather completely understood. On the other hand, the behaviour of u?

all

and wy

as a — oo is not quite completely understood. The followings are interesting
problems which need further study:
1. What is the exact growth rate of u®!(0) for N > 2 as o — oo ? Through the Proof

«

of Theorem 4.1, we showed that if N > 3, there exists some constant C' > 0 satisfying

(a—l_N);_ﬁug”(O)SC’(a}N)l_iﬂ_m—>O asa— 0
and
N -
1/C§1im(a+ )p_ﬁ max u®(z) < C.

z€B(0,1)
From Harnack inequality, we see that for any fixed z € B(0,1), the growth rate of
u(x) is the same with that of u2(0).

2. Can we obtain finer convergence of u% for N = 2 ? Main difficulties in the case
N = 2 come from the fact that for N = 2, in contrast to the cases N > 3, there is no
appropriate inequality of Sobolev type which is independent of domains.

3. There is a unique maximum point z, of u®! for N = 1. Then, what is the

asymptotic behaviour of z, as a — 00 7
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