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SYMMETRY OF EXTREMAL FUNCTIONS
FOR THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

CHANG-SHOU LIN AND ZHI-QIANG WANG

(Communicated by David S. Tartakoff)

Abstract. We study the symmetry property of extremal functions to a family
of weighted Sobolev inequalities due to Caffarelli-Kohn-Nirenberg. By using
the moving plane method, we prove that all non-radial extremal functions are
axially symmetric with respect to a line passing through the origin.

1. Introduction

This paper is concerned with symmetry properties of extremal functions for the
following weighted Sobolev inequalities due to Caffarelli, Kohn and Nirenberg ([3]):
for all u ∈ C∞0 (RN ),

(1)

(∫ N

R
|x|−bp|u|p dx

)2/p

≤ Ca,b
∫ N

R
|x|−2a|∇u|2 dx

where for N ≥ 3:

(2) −∞ < a <
N − 2

2
, a ≤ b ≤ a+ 1, and p =

2N
N − 2 + 2(b− a)

,

and for N = 2:

(3) −∞ < a < 0, a < b ≤ a+ 1, and p =
2

b− a .

Let D1,2
a (RN ) be the completion of C∞0 (RN ), with respect to the inner product

(4) (u, v)a =
∫ N

R
|x|−2a∇u · ∇v dx.

Then inequalities (1) are extended to all u ∈ D1,2
a (RN ). Define

(5) S(a, b) = inf
u∈D1,2

a (RN )\{0}
Ea,b(u)
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to be the best embedding constants, where

(6) Ea,b(u) =

∫ N

R
|x|−2a|∇u|2 dx(∫ N

R
|x|−bp|u|p dx

)2/p
.

The extremal functions for S(a, b) are least-energy solutions of the Euler equation

(7) − div(|x|−2a∇u) = |x|−bpup−1, u ≥ 0, in RN .

The best constant and the minimizers for the Sobolev inequality (a = b = 0)
were given by Aubin [1] and Talenti [16]. In [13], Lieb considered the case a = 0,
0 < b < 1 and gave the best constants and explicit minimizers. In [8], Chou and
Chu considered the a-nonnegative region and gave the best constants and explicit
minimizers. The symmetry of the minimizers has also been studied in [13] and [8].
In summary, for a ≥ 0, all nonnegative solutions in D1,2

a (RN ) for the corresponding
Euler equation (7) are radial solutions (in the case a = b = 0, they are radial with
respect to some point) and explicitly given ([1], [16], [13], [8]). This was established
in [8], using a generalization of the moving plane method (e.g., [10], [11], [2]).

Recently, Catrina and Wang ([4], [5]) have discovered the symmetry-breaking
phenomenon of the extremal functions for a sub-region of parameters when a < 0
occurs (see also [19] for a partial result). More precisely, they proved in [4], [5] that
there is a function h(a) defined for a ≤ 0, satisfying h(0) = 0, a < h(a) < a+ 1 for
a < 0, and a+1−h(a)→ 0 as −a→∞, such that for any (a, b) satisfying a < 0 and
a < b < h(a), the extremal function for S(a, b) is non-radial. In a recent preprint
[9] of Felli and Schneider, it is observed that this curve h(a) can be sharpened to
the following:

(8) h(a) = 1 + a− N

2

(
1− N − 2− 2a√

(N − 2− 2a)2 + 4(N − 1)

)
.

A natural question is on the symmetry of these non-radial extremal functions. In
[6], Catrina and Wang have proved that for c ∈ (0, 1) fixed, for sufficiently large
−a, up to rotations and dilations, the extremal function to S(a, a + c) is unique
and has O(N − 1) symmetry (i.e., the extremal function is axially symmetric with
respect to a line passing through the origin).

In this paper, the main result is the following that gives the exact symmetry for
all non-radial extremal functions.

Theorem 1.1. Let N ≥ 2. For all (a, b) satisfying a < 0 and a < b < h(a), the
extremal function u to S(a, b) has exact O(N − 1) symmetry. More precisely, up to
a rotation, u(x) only depends on the radius r and the angle θN between the positive
xN -axis and ~Ox, and on each sphere {x ∈ RN | |x| = r}, u is strictly decreasing as
the angle θN increases, i.e., u = u(θN , r) and ∂u

∂θN
(θN , r) < 0 for all r > 0 and all

θN ∈ (0, π).

Another natural question is what is the symmetry of the extremal functions for
the parameters (a, b) with h(a) ≤ b < a+ 1 for a < 0. The following result offers a
partial answer.
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Theorem 1.2. Let N ≥ 3, and b0 ∈ (0, 1) be fixed. Then with C > 0 given, for
all (a, b) sufficiently close to (0, b0), any bound state solution of equation u of (7)
satisfying ||u||a ≤ C is radially symmetric with respect to the origin.

This theorem improves the result of [17] in which they obtained a result for the
least-energy solutions. Our argument is different from that in [17].

In Section 2 we first recall a new formulation of the inequalities (1) from [4], [5].
For this alternative formulation some new ideas developed in [7], [15] for proving
symmetry properties via the maximum principle can be applied to derive the desired
results. Then we shall give the proofs of the main theorems.

2. Proofs of the main results

We start by recalling a reformulation of the inequalities (1) given in [4], [5]. The
proofs of our main results will be based on this new formulation.

We shall use the notation x = (θ, t) ∈ C = SN−1 × R, which is placed in RN+1

with the t-axis coinciding with the xN+1-axis in RN+1. To u a smooth function
with compact support in RN \ {0}, we associate v a smooth function with compact
support on C, by the transformation

(9) u(y) = |y|−
N−2−2a

2 v(
y

|y| ,− ln |y|).

Here for y ∈ RN \ {0}, with t = − ln |y| and θ = y
|y| we have (θ, t) ∈ C. It was

proved that the mapping (9) is a Hilbert space isomorphism from D1,2
a (RN ) to

H1(C), where the inner product on H1(C) is

(v, w) =
∫
C
∇v · ∇w +

(
N − 2− 2a

2

)2

vw dµ.

If there is no ambiguity, we still use || · ||a for the norm in H1(C) with respect to
the above inner product.

Now we define an energy functional on H1(C) by

(10) Fa,b(v) =

∫
C
|∇θv|2 + v2

t +
(
N − 2− 2a

2

)2

v2 dµ(∫
C
vp dµ

)2/p
.

If u ∈ D1,2
a (RN ) and v ∈ H1(C) are related through (9), then

Ea,b(u) = Fa,b(v).

Moreover, if u is a solution of (7), then v satisfies

(11) −vtt −∆θv +
(
N − 2− 2a

2

)2

v = vp−1, v > 0, on C

where t = − ln |y|, and ∆θ is the Laplace operator on the N−1 sphere. In summary
we have the following from [4], [5].

Proposition 2.1. (i) The transformation (9) gives a Hilbert space isomorphism
between D1,2

a (RN ) and H1(C).
(ii) If u ∈ D1,2

a (RN ) and v ∈ H1(C) are related through (9), then Ea,b(u)
= Fa,b(v). Therefore, for S(a, b) as defined in (5), it follows that S(a, b) =
infH1(C)\{0} Fa,b(v).
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(iii) Solutions of (7) and (11) are in one-to-one correspondence, being related
through (9).

We shall prove the following result regarding the new formulation, which implies
Theorem 1.1. By the result in [5], without loss of generality, we may assume that
any solution of (11) achieves its maximum at t = 0, and is even in t and monotonic
decreasing for t > 0. For t ∈ R we denote by Ot the point on the xN+1-axis in
RN+1 with coordinate t, i.e., Ot = (0, ..., 0, t).

Theorem 2.2. Let N ≥ 2. Let v be a least-energy solution of (11) such that v
is non-radial (i.e., v depends on θ), and let P0 be a maximum point of v. Then
for each fixed t, v(θ, t) is axially symmetric with respect to the line passing through
Ot and P0 + Ot. Moreover, by assuming that P0 is located on the positive xN -
axis and denoting by θN the angle between the vector from Ot to P0 + Ot and the
vector from Ot to x with x = (θ, t), we have that v depends only on t and θN , and
∂v
∂θN

(θN , t) < 0 for all θN ∈ (0, π) and all t ∈ R.

We shall follow the ideas developed recently in [7], [15], which are along the line
of research of using the moving plane method for symmetry of positive solutions
([10], [11]).

Proof. For simplicity, we write λa = (N−2−2a
2 )2. Let T be any hyperplane in RN+1

that passes through the xN+1-axis. Let C+ be one of the half cylinders of C \ T .
For x ∈ C+, x∗ denotes the reflection point of x with respect to the plane T .

We claim that one of the following assertions holds: (a) v(x) = v(x∗) for all
x ∈ C+; (b) v(x) > v(x∗) for all x ∈ C+; (c) v(x) < v(x∗) for all x ∈ C+.

To this end, we first prove that either v(x) ≥ v(x∗) for all x ∈ C+, or v(x) ≤ v(x∗)
for all x ∈ C+. Suppose this is not true. Then the following two sets are both
nonempty:

D+ = {x ∈ C+ | v(x) > v(x∗)}, D− = {x ∈ C+ | v(x) < v(x∗)}.

Define w(x) = v(x) − v(x∗) for x ∈ C+. Then w satisfies

(12)

{
−∆w + λaw = c(x)w, x ∈ C+,

w = 0, x ∈ ∂C+

where c(x) = (p − 1)
∫ 1

0 (sv(x) + (1 − s)v(x∗))p−2ds. Denote D∗− = {x∗ | x ∈ D−}
and define u on C as follows:

(13) u(x) =


w(x), x ∈ D+,

dw(x∗), x ∈ D∗−,
0, otherwise.

Here the constant d > 0 is chosen such that∫
C
u(x)φ1(x) = 0

with φ1 being the first eigenfunction of the following eigenvalue problem:

(14)

{
−∆φ+ λaφ− (p− 1)vp−2φ = µφ, x ∈ C,
φ = 0, x ∈ ∂C,
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which is well-defined due to the decay property of v as |t| → ∞. Let µ2 be the
second eigenvalue of (14). Since v is a least-energy solution of (11) we have µ2 ≥ 0.
On the other hand, we may check that u is not identically zero and

(15) −∆u+ λau− (p− 1)vp−2u


≤ 0, x ∈ D+,

≥ 0, x ∈ D∗−,
= 0, otherwise.

Following these we have a contradiction as follows:
(16)

0 >
∫
C
u(−∆u+λau− (p− 1)vp−2u)dx =

∫
C
(|∇u|2 +λau

2− (p− 1)vp−2u2)dx ≥ 0.

Thus we have proved that either w ≥ 0 or w ≤ 0 for x ∈ C+. By the strong
maximum principle, we have either w > 0, or w < 0, or w = 0 for all x ∈ C+,
corresponding to the three alternatives in the claim. This proves the claim.

Next, let P0 be a maximum point of v. Without loss of generality, we may assume
that P0 = (0, ..., 0, 1, 0) ∈ RN+1, i.e., P0 is on the xN -axis. Let T0 be the hyperplane
in RN+1 that has xN as its normal direction. Let C+ = {x ∈ C | xN > 0} and
for x ∈ C+, let x− be the reflection point of x with respect to T0. Then from
the first part of the proof we have v(x) > v(x−) for all x ∈ C+. Since otherwise,
v(P0) = v(P−0 ) = maxC v and we may produce a contradiction as follows. Let T
be any hyperplane in RN+1 that contains the xN+1-axis such that P0 /∈ T , and
let CT be the half cylinder of C \ T such that P0 ∈ CT . For x ∈ CT , let x∗ denote
the reflection point of x with respect to T . Then we have v(P0) ≥ v(P ∗0 ) and
v((P−0 )∗) ≤ v(P−0 ). By the proof in the first part, we obtain v(x) = v(x∗) for
all x ∈ CT . Since T is arbitrary, we assert that v must be independent of its θ
component, which is a contradiction with the assumption.

Finally, choose any two-dimensional plane in RN that contains the xN -axis. For
simplicity we assume this is generated by the x1 and xN directions. Let Rω be
the ray from the origin on this two-dimensional plane that has an angle ω with the
positive x1 direction for ω ∈ (−π2 ,

π
2 ) with ω = π

2 corresponding to the positive
xN -axis. Let νω be the normal vector of the ray Rω in this two-dimensional plane
with ν0 = eN (the N -th axis direction) and let Tω be the N -dimensional hyperplane
in RN+1 that has νω as its normal vector. Let Cω be the half cylinder of C \Tω that
contains P0 for ω ∈ [0, π2 ), and for x ∈ Cω let xω be the reflection point of x with
respect to Tω. Define uω(x) = v(x) − v(xω) for x ∈ Cω. Then we have

(17)

{
−∆uω + λauω − cω(x)uω = 0, x ∈ Cω,
uω = 0, x ∈ ∂Cω

where cω(x) = (p−1)
∫ 1

0
(sv(x) + (1− s)v(xω))p−2ds. For ω = 0, we have u0(x) > 0

for all x ∈ C0. Let

ω0 = sup{ω | uω′(x) ≥ 0, ∀x ∈ Cω′ , ∀ 0 ≤ ω′ ≤ ω ≤ π

2
}.

We want to prove ω0 = π
2 . If this is not true, we produce a contradiction as follows.

From the definition of ω0 and the proofs in the first part we have for 0 ≤ ω < ω0,
uω(x) > 0 for x ∈ Cω, ∂u

∂νω
(x) > 0 for x ∈ Tω, and uω0(x) = 0 for all x ∈ Cω0 . Since

Pω0
0 is also a global maximum point of v, we have Pω0

0 ∈ Tω1 for some ω1 ∈ (0, ω0)
and ∇v(Pω0

0 ) = 0. We have a contradiction with 2 ∂v
∂νω1

(Pω0
0 ) = ∂u

∂νω1
(Pω0

0 ) > 0.
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Therefore we obtain u π
2
(x) ≥ 0 in Cπ

2
. Using the same argument we may obtain

also u−π2 (x) ≥ 0 in C−π2 . This leads to u π
2
(x) = 0 for all x ∈ Cπ

2
. Now it follows

that for all ω ∈ (−π2 ,
π
2 ), 2 ∂v∂ω (x) = ∂u

∂νω
(x) > 0 for all x ∈ Tω. Note that for t fixed,

the angle θN between the vector from Ot to P0 +Ot and the vector from Ot to the
point x is given by θN = π

2 −ω; so we get ∂v
∂θN

(x) < 0. This completes the proof of
Theorem 2.2. �

Remark. The method above was used in [7] for more general nonlinearity f(v)
than vp−1. This also applies to our equation (11). In fact, the same result of
Theorem 2.2 still holds for equation (11) under the following conditions on f(v): f ∈
C2(R,R), f ′(0) = 0, there is θ ∈ (0, 1

2 ) such that 0 < F (u) =
∫

0 uf(s)ds ≤ θuf(u)
for all u 6= 0, and there are C > 0 and q ∈ (2, 2∗) such that |f(u)| ≤ C(1 + |u|q−1).
We leave the details of the statements to the reader. We do not know whether such
a result is still true for equation (7).

Finally we give the proof of Theorem 1.2.

Proof. Again we shall work with equation (11). First we observe that for N−2
2 >

a ≥ 0, a ≤ b < a + 1 and a + b 6= 0, when we make a linearization at the radial
solution of equation (11), the kernel is generated only by the translation invariance
in t of the problem (see [17], [18]). Thus if we confine ourselves to the subspace
of even functions in t, the radial solution is nondegenerate in the sense that the
kernel of the linearization is trivial, and therefore the Implicit Functions Theorem
can be applied at these parameters. Since there is a unique radial solution (in
the even functions space) we conclude that the radial solutions are isolated. By
the result of [5] that any (even) solution is monotonically decreasing to zero as
|t| → ∞, we have that for (a, b) near (0, b0), all solutions uniformly tend to zero
as |t| → ∞. Let C > 0 be fixed. Now if for a sequence (an, bn) → (0, b0) with
an < 0 (in equation (11) this corresponds to pn → p0 = 2N

N−2+2b0
∈ (2, 2∗)),

there are non-radial solutions vn for these parameters satisfying ||vn||an ≤ C, then
we must have for a subsequence, maxC vn = Mn → ∞. Otherwise, due to the
energy bound and using the concentration-compactness arguments we would get a
sequence of non-radial solutions converging to the even (nontrivial) radial solution
at (0, b0), which is a contradiction with the fact that even radial solutions are
isolated. Without loss of generality, we assume that a maximum point of vn is
at P = (1, 0, ..., 0) ∈ C ⊂ RN+1 and for given 0 < r < 1 we define a map from
Br(P ) := {x ∈ C | (x1 − 1)2 + x2

2 + ... + x2
N+1 < r2} onto Br(0) ⊂ RN by

ψ(x) = (x2, ...xN , xN+1) ∈ RN . It is easy to see that ψ has an inverse map and the
Jacobians of both ψ and ψ−1 are 1 at P and 0 respectively. Define

w(x) = M−1
n vn(ψ−1(M−

pn−2
2

n x)) , for x ∈ RN , with |x| < M
pn−2

2
n r.

Then 0 ≤ wn ≤ 1 and wn(0) = 1 and wn satisfies an elliptic equation of the form

−
N+1∑
i,j=2

ai,j,n(x)
∂wn
∂xi∂xj

+
N+1∑
i=2

bi,n(x)
∂wn
∂xi

+ cnwn = wpn−1
n .

Using the fact that the Jacobians of ψ and ψ−1 both tend to 1 at P and 0 re-
spectively, we have ai,j,n(x) → IdN×N , bi,n(x) → 0, cn(x) → 0, as n → ∞, all
uniformly in a bounded set of x. By elliptic theory we have that wn converges to
w in C2

loc(RN ) and w is a positive solution of −∆w = wp0−1 in RN . However,
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this is a contradiction since it is well known that such a solution does not exist for
p0 ∈ (2, 2∗). This completes the proof of Theorem 1.2. �

The question on the symmetry of extremal functions for h(a) ≤ b < a + 1, in
general, remains open.
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