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Abstract. In this article, we prove that the problem
—Av+v=vP"1 v HY(Cy), v> 0in Cy,

with 2 < p < %, C\ = Siv 1y R, has a unique ground state solution provided A is sufficiently
large. We also prove uniqueness results in symmetric subspaces, and determine the exact symmetry
of solutions. These results have direct implications regarding to the uniqueness and symmetry of
the extremal functions in certain Sobolev type inequalities with weights due to Caffarelli, Kohn, and

Nirenberg.
1. Introduction. In two earlier papers ([5], [6]), the authors studied the problem
—div(|z|72*Vu) = |z|"%PuP~ 4 > 0 in RY, (1)
where for N > 2:

-2
, a<b<a+1l (a<b<a+1, if N=2),
; ON ()
and p = .
P=N2120-q)
Our primary concern was the study of the ground states solutions which are extremal functions
of and correspond to the best constants in a family of Sobolev type inequalities with weights due

to Caffarelli, Kohn, and Nirenberg. They established in a more general context (see [2], and for
higher order versions [16]), the following inequalities

2/p
(/RN ja] P u? dau) < Cu [, oIVl do (3)

hold for all u € C§°(RY), if and only if conditions (2) are satisfied.
Let DL2(RY) be the completion of C§°(RY), with respect to the inner product

(u,v) = / |z|~2Vu - Vo dz.
R~

Then we see that (3) holds for u € DL2(RY). We define

S(a,b) = inf Eqp(u), 4
(a.5) ueDy?(RM)\{0} vt @

to be the best embedding constants, where

Ea,b(u) =

—xo<a<

fRN || ~2%|Vu|? dz
(fRN |$|7bp|u|p d:L_)Z/p.
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The extremal functions for S(a,b) are ground state solutions of equation (1).

Regard to the existence and uniqueness of solutions for (1), work was done as follows: in [1],
[20], the solution was found explicitly and unique up to translations and dilations in the case
a=b=0, by Aubin, and Talenti. For 0 < a < ¥=2, and a < b < a+ 1, problem (1) has only
radially symmetric solutions which are unique up to dilations and known explicitly. This was
established by Lieb (in [15]) for a = 0, using rearrangement methods, and by Chou and Chu (in
[7]), using a generalization of the moving plane method. On the other hand, for a < 0, little has
been known until the recent work in [3], [5], [6], [13], [22]. In [5] and [6], we have given some new
results which reveal interesting new phenomena. Let S,(RY) be the best embedding constant
from H'(RY) into LP(RY), i.e.

~ v 2 2 d
iﬁf fR [Vul? +u 2 m'
ueH' (hM)\{o} (fRNIUIp da:)F

SP(RN) =

Among other things, in [5] the authors have proved the following theorem.

Theorem 1. ([5]) (Ezistence and symmetry breaking of ground state solutions)
(i) Fora < b<a+1, S(a,b) is always achieved. ILe., there is always a ground state solution.
(i) There is a function h(a) defined for a < 0, satisfying h(0) =0, a < h(a) < a+1 fora <0,
and a+1— h(a) = 0 as —a — oo, such that for any (a,b) satisfying a < 0 and a < b < h(a),
the grounds state solution is nonradial.

In this paper we are interested in the uniqueness of ground state solutions as well as their
exact symmetry. A consequence of our main theorem in this paper is the following

Theorem 2. (Asymptotic uniqueness and symmetry of the ground states)

Forb—a € (0,1) fized, provided that —a is sufficiently large, the problem (1) has a unique (up
to rotations and dilations) ground state solution u,. Moreover, this solution has an O(N — 1)
symmetry, i.e. there is a direction in RY about which u, is azially symmetric.

Since the problem is radially symmetric we are also interested in the uniqueness and exact
symmetry of G-ground state solutions when we consider the extremal functions of S(a,b) in
’D(ll:é(RN ) for any closed subgroup of O(NN). Here D;:é(]RN ) consists of G invariant functions of
DL2(RN). Results in this direction will be stated in the next section as corollaries of our main
results which are set up in a more general frame of work.

2. Main results and Proofs. In order to state our main results we first give an equivalent
problem which we first introduced in [5]. Our approach was new in the sense that we transformed
problem (1) to an equivalent autonomous problem which is set up on a cylinder. Following [5],
[6], we use the transformation

uw) = X7lal 0 (AL (i) ©)
where A = W Problem (1) is equivalent under this transformation to
—Av+ov=v""", ve H'(Cy), v>0in Cy. (7

Here, C) is the cylinder Sﬁ\v 1 x R, with Sf\v ~1 being the sphere with radius A in RY, and A is
the Laplace-Beltrami operator corresponding to the metric induced from RVY+!. On the cylinder
C» we have the energy functional

|Vo|? 4+ 02 du
F(v) = Je, - (8)

(fey v )"

On Cy, we use either coordinates (0,t) € SY ' xRory € Cy C RV*!,




UNIQUENESS AND EXACT SYMMETRY 3

In [6], we proved by the moving plane method the following

Theorem 3. ([5]) Any solution of (7), possibly after a translation int, is even int, i.e. v(6,—t) =
v(0,t), and %(9,1:) <0, for all 8 and t > 0.

Due to this result, in the following, we shall always assume that solutions of (7) are even in ¢,
so that we are concerned only with symmetries in O(N).

To avoid ambiguities, we make the following conventions. For a subgroup G of O(N), we fix
an action on SV~1. By H}(C) we understand the subspace of functions u € H(C) with the
properties u(g~10,t) = u(6,t), and u(f,—t) = u(#,t) for all g € G, 0 € SV~ and t € R. We
remark that choosing a different action of the same group G on SV~1, will produce a different
subspace H}(C) in H*(C).

In order to present the main theorem in [6], we make the following definitions

Definition 1. Let k£ € N, and G C O(N) be a closed subgroup, so that G naturally acts on
SN-1. We say that the action of G has a locally minimal k-orbit set  C SV~1, if there exists
d > 0 such that

(a) Q is G-invariant,

(b) #Gy =k for any y € Q,

() #Gy >k for any y € SV~ with 0 < dist(y, Q) < 4.

Definition 2. We say G is maximal with respect to a locally minimal k-orbit set €2 if for any
closed subgroup H, with G < H < O(N), H # G, we have #Hy > k for any y € Q.

Definition 3. For v € H}(C,), the symmetry group of v is defined to be
¥,={9g€O(N) : gv=vae.}
where by gv we understand the function (gv)(y) = v(g~1y).

We shall consider k-bump type solutions in a more general context which include the ground
state solutions as special cases.

Theorem 4. ([6]) (Ezistence of bound states) Let G be a closed subgroup of O(N), and Q2 C
SN=1x {0} C C a locally minimal k-orbit set of G. Then for X sufficiently large, problem (7) has
a solution wy satisfying: (i) wx is G-invariant; (ii) wx is of k-bump type in the sense that wy
has exactly k maximum points which form a k-orbit Gy, for some yy € Q) := AQ and

. - _1_
Jim | wy = D Ty vy (Sp(®Y)5=20) |l ey = 0;
yEGy
(i)
lim Iy(wy) = k"7 S,(RY);

A—00

(iv) If in addition, G is mazimal with respect to Q, then ¥,,, = G.
Our main result in this paper is the following.

Theorem 5. For \ sufficiently large, the solution wy obtained in Theorem 4 with mazimum
points {yx1, -, Yrk} 18 unique in H5(Cy).

Theorem 5 has some very important corollaries, which we state below.

Theorem 6. Let G be a closed subgroup of O(N) with an action on SV~1 admitting a locally

minimal k-orbit set Q. Let {y1,...,yr} C Q be fized. Let K be the mazimal subgroup of O(N)
whose action on SN1 extends the action of G and has {y1,...,yx} as an orbit. Assume that as
A = oo, there is wy € HL(Cy) given by Theorem J with mazimum points {\y1, ..., \yx}. Then
for X sufficiently large, ¥,,, = K.
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In order to study the exact symmetry of the ground state solutions in G-invariant subspaces
(i-e., G-ground states), we need another definition.

Definition 4. For k € N, and a closed subgroup G of O(N), we fix an action on SV ~1. We say
this action admits a homogeneous minimal k-orbit set if there is an orbit containing k points,
any orbit contains at groundk points, and all orbits with k elements are congruent (i.e. if Q and
A are two orbits with k elements, there is h € O(NN) such that hQ2 = A).

Corollary 1. If the action of G admits a homogeneous minimal k-orbit set, then for \ sufficiently
large, the ground state solution of (7) in HL(Cy) is unique up to a congruence transformation.

Corollary 2. For )\ sufficiently large, problem (7) has the ground state solution wy, unique up
to rotations. Moreover, ¥, = O(N — 1) the isotropy subgroup of (6,0), where (8,0) is the
mazimum point of wy .

We first prove Theorem 5. We need the following lemma.

Lemma 1. Any solution wy given by Theoremj has the property that for any € > 0, there is
R = R, such that w(y) < € for any y with dist(y, {ya1,--- yrx}) > R.

Proof. Following the construction of the solutions in [6] (see the proof of Theorem 4.1 there), We
have that for any ¢ > 0, there is R = Rs such that

/ [Vwy|? + w3 du < 6.
CA\U;‘7=1BA,R(1/A,J')

The Lemma then follows by the elliptic estimates (e.g, [10]) and bootstrap arguments. O

Proof of Theorem 5. To prove that the solution wy € H}(Cy) with maximum points {yx 1, ..-,Yxk }
is unique as A — oo, we use a argument similar to that from and [8] and [11]. Assume there
is a sequence A\, — oo, for which problem (7) has two ground state solutions w, , and ws .
According to Theorem 3, we assume that the solutions w; , are even in t, and both w;, have
their global maxima M, = {yn,1, ..., Yn,k} O the sphere ¢t = 0.

For each n, we define on Cy, the function

Wi,n — W2.n

Zn = . 9
" ||w1,n - w2,n||L°° ( )

Each z, satisfies the following PDE
—Azp + 2n = cn(0,t) 2, on Can,, (10)

where

1
en(0,8) = (p—1) / (51 (8, 8) + (1 — )wa (6, 1))~ ds. (11)

0
We have that z, are G-invariant, smooth functions on C,,, with global maximum value
maxc, 2z, = 1 for all n (if maxc, 2zn < 1, then ming, 2, = —1 and we can interchange

the labels of the two functions wi , and ws ). Denote by (&,,t,) one maximum point for z,,
ie. zp(&n,tn) =1 for all n.

Lemma 2. Thereis R > 0 independent of n, such that dist((&n,tn), Mn) < R, for all |2, (&n, tn)| =
1.

Proof. If the lemma is false, then there are (&, t,) with 2,(&,,t,) = 1, and dist((&,, tn

)
1
00. By Lemma 1, for € > 0, there is R, sufficiently large such that w; n(&n,tn) < (pil) =

Therefore ¢, (€n,tn) < €. On the other hand, from —Az,(&,,t,) > 0 and equation
obtain 1 < ¢,(ty,&,). This provides the necessary contradiction. The case z,(&,t,) = —1 is
similar. O
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Now we come back to the proof of Theorem 5. We define a diffeomorphism between the ball
of radius 7 centered at the origin in RV and a subset of Cy as follows. We identify RV with the
tangent space to Cy at y and consider the projection in RV*! in the direction of the normal to
Cy at y.

To be exact, let

Cx = {(z0, -y zn) € RN 122 + L+ 2%, = N} (12)
Assume y = (A,0,...,0,yn) € Cx and for 0 < r < A, define a map from
By, (y):={z €Cy:2} + ... +aN_1 + (xn —yn)> <77},
onto B,(0) C RY, by
Oary(®) = (@1, N1, TN —YN) € RV.
For any y € Cy let R a rotation in RV+! that leaves the zn-axis fixed and such that
Ry = ()\,0,...,0,yn) € RV,
We then define
Iy (T) = O r Ry (R).

Therefore for all y € Cx, ¢,y is defined for z € By ,(y).
Conversely, let y = (),0,...,0,yn) € C and for z € RY with |z| < r let

¢X,1r,y(~'”) = (\/)\2 — (@ + -+ 2X_1), %1, TN 1, TN +Yn) € Bar(y)-
Again, for arbitrary y € C let R a rotation in RV*! that leaves the zy-axis (in RV*!) fixed and
such that
Ry=(X\0,..,0,yn)-
For z € B,(0) C RV, define
Oy (@) = B3] 5y (@) € Cn.
We note here that the Jacobians Jy, , (z), and Jd);,lr’y (x), tend to 1 uniformly on By ,(y),

respectively B,(0), as r/A — 0.
For r < X\ and y € C) we construct the operators

TA,r,y : Hl(B/\,T‘(y)) - Hl(BT(O))a and TA,r,y : Hl(BT(O)) - Hl(BA,r(y))
as follows
Ty (v) () = v(¢5,.,, (%)),
and
T/\,r,y(u) (.Z') = u(¢/\,7‘,j{/ (.Z'))

Denote v1,n = Ty, /37, (yo,0) (W) V20 = T, %7 g s (W2,n), a0d Go =T 5y, (20)-
By standard elliptic theory, both v; , tend in C*(B, /5x-(0)) to a solution of

—Au+u=uP"t (13)

It is well known (see [14]), that equation (13) has a unique positive solution in H!(RY), with
maximum point at the origin. We denote this solution by U(z).

Due to the fact that y,: are maximum points of w;,, from the equation (7), we have
Win(Yn,1) > 1. Since v;n(0) = w;,n(yn,1) > 1, neither vy, nor ve, can tend to the trivial
solution of (13). Therefore,

vin —= U,in C2., as n — oo. (14)
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From (11) and (14), we obtain ¢, — (p — 1)UP~2 pointwise. Again, by elliptic theory, we get
that ¢, tends in Cloc® to a solution ¢, of the linear equation
—Ap+¢=(p—1)UP%(z)¢, in RV. (15)
According to Oh [19], we have

N
6=>_aUj, (16)
j=1

with a; € R, and U; = 2¥

— Bz
From Lemma 2, we have that ¢ cannot be identically zero, which means not all a; are zero.
As it is shown in [11], the function U(z) satisfies U;;(0) = 0 for ¢ # j, and U;;(0) < 0. For a j
fixed so that a; # 0, we have

w;(0) = o;Uj;(0) # 0. (17)
On the other hand, since y, 1 are maximum points for w; ,, we have Vz,(8,,0) = 0 for all n.
Hence V{(,(0) = 0 for all n. This, and (17) contradict the fact that ¢, — ¢ in C7 .. O

Proof of Theorem 6. Since the action of K is an extension of the action of G, it follows that
{y1,---,yr} is part of a locally minimal k-orbit set A C Q for the action of K. Let vy a solution
in H}(Cy), with maximum points {\y1, ..., \yx }. Theorem 5, shows that wy = vy. O

Proof of Corollary 1. Assume wy and vy are two solutions as A — oo, with maximum points
{Uxr1y-Tr 1> and {Ga1,...,0x, }, respectively. By hypothesis, there are hy, hy € O(N) such

that Bx{ﬂ,\,l,...,g)\k} = h,\{:l],\,l,...,g,\k} = {)\yl,...,)\yk}, for a fixed k-orbit {yl;---;yk}- By
Theorem 5, we have that for A sufficiently large wy = vj. O

Proof of Corollary 2. The proof is immediate from Theorem 1 where G = {I} is the trivial
subgroup of O(N). The exact symmetry follows from Theorem 6. O

Proof of Theorem 2. It follows from Theorem 5 and Corollary 2. O
We finish the paper with some remarks.

Remark 1. Without the homogeneous condition on the group actions we do not know uniqueness
and ezxact symmetry of the G-ground states. These remain to be interesting questions. Below we
giwe an example of a group action which has a non-homogeneous minimal 4-orbit set.

Example 1. Denote by Ts the group which leaves invariant a regular tetrahedron in R?, and Dy
the group which leaves invariant a square in R2. Let G = T3 x D4 acting on S* as follows: S* is
included in R® in the standard way, and points in R® are labeled by coordinates (1, ...,x5). The
T3 part acts on (x1,22,3), while the Dy part acts in the xaz5-plane. The minimal 4-orbit set
Q, consists in the vertices of the tetrahedron in the x1, T2, T3 dimensions, the reflections about
the origin of these vertices, and the vertices of a square in dimensions r4 and x5. Therefore )
is formed out of three orbits, of which only two are congruent.

Remark 2. Next we want to mention some work for the exact symmetry of ground state solutions
for elliptic problems. Using the moving plane method, Gidas, Ni, and Nirenberg ([9]) showed for
some elliptic Dirichlet problems in ball domains or in the whole space all positive solutions are
radially symmetric. The issue of exact symmetry of positive solutions has not been studied very
much for elliptic problems which have both radial and nonradial positive solutions. Using the
rearrangement method Kawohl ([12]) studied the exact symmetry of positive solutions in some
symmetric subspaces for an elliptic Dirichlet problem on annular domains. Using similar method
Ni and Tokagi gave the exact symmetry of the ground state solutions for a Neumann problem in
ball domains. The method we use in this paper is different from the above mentioned ones and
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follow closely to some of our earlier work in [4], [17], and [21], in which we have constructed k-
bump type symmetric positive solutions having prescribed symmetry for Dirichlet problems ([4]),
Neumann problems ([17]) and nonlinear Schridinger problems ([21]). Owur arguments in this
paper can be used to obtain similar results for these problems and we leave the details to interested
reader.

Remark 3. When an elliptic problem has both radial and nonradial positive solutions we expect
to obtain solutions having prescribed symmetry as we work on (1) in this paper. Conversely, we
would like to know given a symmetry G how many solutions with exact symmetry G the problem
can have. Note that the radial solution is unique. It would be interesting to know in general
under what conditions on G the solution with exact symmetry G is unique.
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