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Abstract

In this paper, an efficient and stable numerical algorithm for computing multiple
saddle points with symmetries is developed by modifying the local minimax method
established in [12, 13]. First an invariant space is defined in a more general sense and a
Principle of Invariant Criticality is proved for the generalization. Then the orthogonal
projection operator to the invariant space is used both to preserve the invariance and
to reduce computational error across iterations. Simple averaging formulas are used
to find the orthogonal projection operators. Numerical computations of examples with
various symmetries, of which some can and others cannot be characterized by a compact
group of linear isomorphisms, are carried out to confirm the theory and to illustrate
applications. The mathematical features of various symmetries demonstrated in these
examples fall into two categories: nodal solutions of saddle point type with large Morse
indices and non-radial positive solutions via symmetry breaking in radially symmetric
elliptic problems. The new numerical algorithm generates these rather unstable solutions
in a stable way. The existence of many unstable solutions and their behavior found in

this paper remain to be investigated.

1 Introduction

Let H be a Hilbert space and J : H — R be Frechet differentiable, J' be its Frechet derivative
and VJ be the gradient and J” its second Frechet derivative if it exists. A point v* € H is a

critical point of J if u* solves the Euler-Lagrange equation J'(u*) = 0. A critical point u* is
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non-degenerate if J"”(u*) is invertible, otherwise u* is degenerate. According to Morse theory,
the Morse Index (MI) of a critical point u* of J is the maximal dimension of a subspace of H on
which the operator J”(u*) is negative definite. The first candidates for a critical point are the
local extrema to which the classical critical point theory was devoted in calculus of variations.
Most conventional numerical algorithms focus on finding such stable solutions. Critical points
that are not local extrema are wunstable and called saddle points. Due to unstable nature,
saddle points are very elusive to be numerically captured.

It is interesting for both theory and applications to develop efficient and stable numerical
algorithms for finding multiple saddle points. Minimax principle is one of the most popular
approaches in critical point theory. However, most minimax theorems in the literature (See
[1], [18], [19], [20], [21], [24]), such as the mountain pass, various linking and saddle point
theorems, require one to solve a two-level global optimization problem and therefore not useful
for algorithm implementation.

Efforts for numerically computing saddle points have been made in [7] for MI=1 and in [10]
for MI=2 which were motivated by theoretical (global minimax) characterizations of saddle
points in [1] and [23] respectively. Inspired by [7, 10] and an idea in [9], a local minimax method
(we shall refer it as LMM in the paper) was developed in [12, 13] and many multiple solutions
were numerically computed for a class of semilinear elliptic equations. Its convergence results
are obtained in [13]. Several results in instability analysis of saddle points are established in
(14, 25].

We briefly recall LMM here. The basic idea of LMM is to define a local peak selection and
a solution set. Let L C H be a closed subspace, called a support to the critical point u* to be
found, S;1 = {v € Lt : ||v|| = 1} and denote

{Lyv}={tv+vp:teR v, €L} YveSp..
A set-valued mapping P: S, — 2F is called a peak mapping of J if P(v) is the set of all
local maximum points of J in {L,v}. A single-valued mapping p: S;1 — H is called a peak
selection if p(v) € P(v) Vv € Spi. Let v € Sp1 be a point. p is said to be a local peak selection
of J wr.t. L at v if there exists a neighborhood N (v) of v and p is a locally defined mapping
p: N(w)N Sy — H s.t. p(u) € Plu) Vu e N(v) N Spi.
A local minimax theorem which characterizes a saddle point as a local minimax solution

has been established in [12]. It states that let
(1.1) M= {pv):veS.}
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be a solution set, a point u* = p(v*) € M is a saddle point if

v* = arg min J =arg min max J(u
ngSLJ_ ( ( )) vaSLJ_ uE{L}fj} ( )

It becomes a local minimization problem on the solution set M, which can be numerically

approximated by, e.g., the steepest descent method.
A Numerical Local Min-max Method

Step 1: Given positive € and \. Let n — 1 critical points wy, ws, ..., w, 1 of J be given, of
which w,_; has the highest critical value. Set the support L = span{w,ws, ..., w,_1}.

Let v} € Sp1 be an ascent direction at w,_;. Let t) = 1 and v9 = w,_; and set k = 0;

Step 2: Use the initial guess w = tkvF 4 ¥, solve for

wh = p(v ) tov + UL =arg max J(w) and denote tOU + UL =w" = p(vk);

we{L,vk}
Step 3: Compute the steepest descent vector d* = —V.J(w*);
Step 4: If ||d*|| < e then output w, = w*, stop; else goto Step 5;
Step 5: Set
k dk
o (s) _ v + s
||vF + sd||
and find

A A ty A
k_ A ke AV By < _S0nakn ok 2oy — oFn L
st = max {2 [ m e N Tp(v () — () < —0 ] () — o]}
Initial guess u = tfv¥ () + v}, where t§ and v} are found in Step 2, is used to find the
p(v

"(5)) in {L,v*(3)} as similar as in Step 2.

m

local maximum point

Step 6: Set v*! = v¥(s*) and update k = k + 1 then goto Step 2.

The subspace L containing critical points previously found serves as a support to a saddle
point u* to be found at a higher critical level. A support to u* is said to be sufficient if it
contains all critical points below u*’s critical level. When the Morse index of u* gets larger, the
dimension of L grows larger [25]. Solving the local maximization problem in the space {L,v*}
in Step 2 of LMM becomes more expensive. Since u* = p(v*) and v* = arg max,es,, J(p(v)),

the solution set M is a stable set, i.e., when J is restricted to M, u* is a stable solution.



Symmetries exist in many natural phenomena, such as in crystals, elementary particle
physics, symmetry of the Schrodinger equation for the atomic nucleus and the electron shell
w.r.t. permutations and rotations, energy conservation law for systems which are invariant
w.r.t. time translation, etc. Symmetry properties are usually studied by group actions in
mathematics. Symmetries described by compact group actions in variational problems have
been used in the literature to prove the existence of multiple critical points, typically, in the
Ljusternik-Schnirelman theory (see recent results in [15, 11] and others). It is known that
symmetries in a nonlinear variational problem can lead to the existence of more solutions
of saddle type and can also cause degeneracy. In this paper, we study the impact of the
presence of symmetries on LMM in finding multiple saddle points. By modifying LMM, we
shall develop an efficient and stable numerical algorithm for computing multiple critical points

with general symmetries. Consider a semilinear elliptic BVP

Au(z) + f(u(z),z) =0, z€QCR",

(12) u(z) =0, x € 00

where f satisfies some standard conditions. When L = {0}, the solution set
M=A{t,u:ue H,|ul=1,t,>0,VJ(t,u) L u}.

is called the Nehari manifold. Under some standard conditions, it can be shown that M is
smooth, or the peak selection p is continuously differentiable [12].

Several researchers have tried to use certain symmetry of a problem to capture a solution
of higher Morse index. For example, odd symmetry is used in [7] to capture sign-changing
solutions (MI=2) by a minimization on the Nehari manifold with an odd symmetric initial
guess. When a negative gradient-type minimax algorithm is used, the symmetry is inherited
but not enforced, the sequence generated by the algorithm will get close to a saddle point.
However, when computational error builds up or ||VJ(u)| becomes small, computational error
will dominate and break the symmetry of VJ(u). Eventually the symmetry of the sequence
collapses. Therefore, the sequence will not stop near a sign-changing solution, instead it will
slide down to a positive solution (MI=1), unless a forcing stop action is taken. Thus such an
approximation is unstable and no convergence can be established. Even rotational symmetry
is considered in [8] to capture sign-changing solutions (MI=3) by a high-linking algorithm.

Action to preserve the symmetry is taken, so the algorithm is stable.



In this paper, we consider more general symmetries and try to establish some mathematical
justifications. In particular, we are concerned with not only preserving the symmetry but also
reducing computational error across iterations.

There are at least three motivations for one to use symmetries to define an invariant space

Hy in computing a saddle point,

(1) a sufficient support is available in H but one wants to reduce its dimension by using a

sufficient support L in H; to enhance the efficiency and convergence of the algorithm;

(2) no sufficient support is available in H, one has to use the symmetries to find a sufficient

support L in Hrp;
(3) to use symmetries to bypass the degeneracy of a problem.

To find a critical point u* at a higher critical level by LMM, one needs to know if the
support L is sufficient or not. If the answer is yes, one can expect a stable convergence even
without using any symmetry. If the answer is no, the minimization process will sooner or later
find a slider and bypass u*. The algorithm becomes unstable and fails to reach u*.

Assume one has identified symmetries of a problem and defined an invariant subspace H;.
Then one can restrict the problem in H;, i.e., the support L contains critical points at lower
critical level only in H;. By doing so, the dimension of the support L can be greatly reduced.
Since LMM with an insufficient support in H; is unstable, we assume the support L in H; is
sufficient. When computational error builds up or ||[V.J(w*)|| becomes small, computational
error will dominate and break the symmetry of VJ(w"). That is, VJ(w"), eventually w**!
goes to outside of H;. There are two possibilities. If the support L in H; is also sufficient
in H, there is no slider around »*. Thus the symmetry has no effect on the algorithm and
therefore the collapse of the symmetry has no effect either, the algorithm will still converge
to u*; If the support L in H is not sufficient in H, and w**! is outside H;, the minimization
process will sooner or later find a slider and then fail to reach u*. A projection of V.J(w")
onto Hy will pull V.J(w") and then w*! back to H; and resolve the problem.

These type of projections into an invariant space have been used in the literature to preserve
the symmetry, where computational error is not a concern. In this case any projection operator
onto H; will serve the purpose. However, computational error is a main concern in numerical
computation, in particular, in multi-level iterations for finding unstable saddle points at a

higher critical level, which is rather sensitive to computational error. It is therefore a main



concern of this paper. There are infinitely many projection operators onto H;. Some of
them are poor to handle computational error. Only the orthogonal projection operator onto
H; is the optimal one to handle computational error. Thus in this paper, we look for the
orthogonal projection operator onto H;. It is known that finding an orthogonal projection
onto a subspace is equivalent to an infinite-dimensional minimization problem which is very
expansive. It is in particular, very difficult, since there is no explicit expression for H;. The
average formula defined by the Haar integral has been used in the literature to project a point
onto an invariant subspace. Here we expose a fact that the Haar integral operator is actually
the orthogonal projection operator onto H;. Implementation of this formula with LMM for
numerical computations of multiple critical points with symmetries at higher critical levels
will be discussed in detail by using typical numerical examples.

The numerical examples we choose also serve revealing new phenomena in the correspond-
ing mathematical problems. Here we are mainly interested in two directions: nodal solutions
of saddle point type for nonlinear elliptic problems and non-radial positive solutions in radi-
ally symmetric elliptic equations. In both cases, people expect that many unstable solutions
exist, these solutions should have large Morse indices, and that degeneracy occurs in general.
Using LMM with symmetry we shall not only demonstrate solutions that are known to exist
in theory but also exhibit many cases for which the existence is still open in theory. Some
of these examples give surprising, new mathematical features and should shed lights to the

study of the nonlinear elliptic PDEs.

2 Invariant Space and its Orthogonal Projection

2.1 Invariant Spaces and LMM in Invariant Spaces

In order to let LMM handle symmetry we need the concept of invariant spaces. The following

is a more general one without reference to a symmetry.

Definition 2.1 Let H be a Hilbert space and J € C*(H, R). A closed subspace Hy of H is
said to be a J-invariant space if for every u € Hy it holds VJ(u) € Hj.

It is clear that H is trivially a J-invariant space. Since, in general, the smaller is an invariant

space Hjp, the smaller is the Morse index of u* relative to H; which implies that the smaller



is the dimension of the support L [25], and therefore, the more efficient is the numerical
computation, we always look for the smallest such J-invariant space.
Along the line of the classical Principle of Symmetric Criticality (PSC) by Palais, we have

the following Principle of Invariant Criticality (PIC) without reference of a symmetry.

Theorem 2.1 Let H be a Hilbert space, J € C*(H,R) and H; be a J-invariant space. If

u* € Hy is a critical point of J restricted to Hy, then u* is a critical point of J in H.

Proof: u* is a critical point of J restricted to H; implies (VJ(u*),v) = 0 for all v € Hy,
ie,, VJ(u*) L Hy. On the other hand, H; is a J-invariant space, i.e., u* € H; implies
VJ(u*) € Hy. Therefore VJ(u*) € Hr N Hi = {0}. |

Assume a J-invariant space H; has been identified. Since Hj is usually much smaller than
H, replacing H by Hy, LMM can be used, in a much more efficient and stable way, to find
multiple saddle points with certain symmetries at higher critical level.

If L is a closed subspace of Hy, a support to a critical point u* to be found in H; and
denote S;1. = {v € Hy: ||v|| = 1,v L L}. Let k = 0, started from a point v* € S; 1, we have
p(v®) = tFok +vf € Hp for some tF # 0 and v§ € L C Hy. Then d* = —VJ(p(v*)) € H; and
vt = % € H; where s* > 0 is the stepsize. If v° € H; and d* = —VJ(p(v*)) # 0, we

have [12]
J(p(™h)) = J(p(v")) < —%Hd’“lle“1 — .

It concludes that, in theory, LMM is closed in an invariant space H; and generates a strict
minimizing sequence {p(v*)} = {t"v* +v§} in M N H; where M is the solution set defined in
(1.1). The limit of the sequence is a critical point of J in Hy by the convergence results in [13]
and thus a critical point of J in H by PIC. However, in numerical computation of the negative
gradient d¥ = —V J(p(v*)), it involves discretization, approximation, round-off error, etc. It
generates numerical error and then breaks the invariance of d*. To preserve the invariance,

we use the decomposition H = H; @ Hf for some complement space Hf of Hy in H and
d¥ =df + (d")5,  df € Hy, (d)§ € Hj.
Note that if p(v*) € Hy and d* = —V J(p(v¥)) is computed exactly, we should have
d" = (d"); € H; and (d")$=0.

When numerical error is involved, we use (d*); to replace d* in Step 3 of LMM, the updated

k+1

point v*T is now in H; and the invariance is preserved.
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The above decomposition for H needs to find a projection operator 1" from H to H;. There
are infinitely many such projection operators. If preserving the invariance is the only concern,
by PIC, any one of them will serve the purpose. However, when error analysis is concerned,
the case is different. Note that the term (d*)$ = d* — (d*); represents computational error. In
numerical computation, we have not only to preserve the invariance, but also to reduce error
which will be carried to the next iteration. Among all those projection operators, some of
them are very poor to deal with error and there is the optimal one that minimizes the distance
from d* to Hj, the error term, that is the orthogonal projection. In this case, the maximum

invariant part of d* has been carried to (d*); and (d*)$ becomes (d*)71, i.e.,

d* = (d*); + (d*)7 and (d¥); L (d")7.
For this reason, in this paper we will do our best to adopt the orthogonal projection.
Example 2.1 Consider X = R?, Xy = {(0,22)*}. Both

0 0
A= and B =
100 1 0 1
are projection operators of X onto X,. Let (€1, €)1 represents computational error in com-

puting (0, 1)" € Xy, we get u = (1,62 + 1) & Xo. To do projection, we have
Au = (0,100e; + 1+ e)' € Xo and Bu= (0,1+e)" € Xs.

It is clear that A greatly enlarges error while B does mot. As a matter of fact, when error
analysis 1s concerned, B is the optimal operator that minimizes error, i.e., B is the orthogonal

projection operator from X — Xy and Bu is the best approximation one can get.

2.2 Invariant Spaces from Symmetries

Invariant spaces appear naturally when the problems considered possess certain symmetry,
e.g., when the functional J is invariant with respect to certain symmetry. There are two
usual ways in numerical computations to preserve a symmetry. By dividing the domain into
several sub-domains along the axes of symmetry, one may solve the problem only on one
sub-domain with an additional continuity condition with the Neumann data across the cuts,

the problem may become much harder to solve, but the size of the problem becomes smaller;



one may also solve the problem on the entire domain, but use the solution data only on one
sub-domain. Then in either way, one can produce a solution on the entire domain according to
the symmetry. Note that in either way, it preserves the symmetry, but carries computational
error with the solution to the next iteration. Indeed it forces computational error to be of the
same symmetry. However, it is known that computation error is usually asymmetric and even
random.

Contrast to the usual method, our new method separates a solution from computation
error (at least the asymmetric part), and then carries only the solution, not the error, in
iterations. Thus the advantage is clear that it makes the algorithm more efficient and more
stable. Our numerical examples confirm the analysis.

Let us start with the most studied symmetries in the literature, i.e., those symmetries that
can be characterized by a compact group of linear isomorphisms.

Let H be a Hilbert space and G be a compact group of linear isomorphisms of H, i.e., the

map from G x H — H evaluated by (g,u) — gu is continuous such that
l-u=u, (gv)u=g(vu), u— gu islinear, |[gu| = |u].
A set A C H is G-invariant if g(A) = A for every g € GG. The subspace
Hg={ue€ H:gu=u,Vg e G}

is called the invariant subspace of H under G. Let J € C*(H, R). J is said to be G-invariant
if J(gu) = J(u) for every (g,u) € Gx H. A map F: H— H is G-equivariant if go ' = Flog
for every g € G. Since J € C'(H, R) is G-invariant implies that V.J is G-equivariant, i.e.,
VJ(gu) = gVJ(u) Yu € H. When u € Hg, we have gVJ(u) = VJ(gu) = VJ(u) Vg €
G or VJ(u)=VJu)g.

It is clear that the above definition for an invariant space separates the space H from
the functional J, which may have other applications. On the other hand, Definition 2.1
combines the space H with the functional J in the definition of a J-invariant space, which
serves precisely the purpose of applications in this research. It is clear that if J is G-invariant,
then Hg is a J-invariant space as in Definition 2.1. Thus the following classical result follows

from Theorem 2.1.

Theorem 2.2 (Principle of symmetric criticality, Palais, 1979) Let H be a Hilbert space and
G be a compact group of linear isomorphisms of H. If J € CY(H, R) is G-invariant and if

u € Hg is a critical point of J restricted to Hg, then u is a critical point of J.



2.3 Orthogonal Projections

Note that the invariant space Hg is usually infinite-dimensional, finding the orthogonal pro-
jection of d* onto Hg is equivalent to solving an infinite-dimensional optimization problem.
It is very expensive. It is also very difficult since we do not have an explicit expression for
Hg. However, for many usual symmetries, simple algebraic computations can be used to find
the orthogonal projection onto Hg.

In order to preserve the invariance and minimize computational error across iterations, we

need to construct the orthogonal projection operator from H to Hg. Let us first cite

Theorem 2.3 (Haar, 1933) Let G be a compact group and C(G) be the vector space of real-
valued continuous functions on G. Then there exists a unique positive integral (the Haar

integral) such that the map : C(G) — R by f — [, f(g) dg is
(a) linear, monotone and normalized ([,1dg=1);

(b) left-invariant, i.e., [, f(hg)dg= [, f(g)dg.Yh e G. 1

The Haar integral defines the normalized left-invariant Haar integral operator ‘H from H
to H G by
Hu = / gudg, Yu € H.
G

The Haar operator has been used as an projection from H onto Hg in the literature to preserve
an invariance, where computational error is not a concern. When reducing computational error
across iterations is concerned, we are interested mainly in the orthogonal projection operator
onto Hg. Since for u,v € H,
() = [ tgu ) dg = [ (wg o) dg = [ (a0 dg = . 0),
a G a

we have

(u—Hu,v) = (u—Hu,Hv) =0 Yv € Hg,

i.e., H turns out to be the orthogonal projection operator from H onto Hg and u = Hu +

(u — Hu) is the orthogonal direct sum.

2.4 Examples

We give some examples that will be used in our numerical computations.
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Example 2.2 Let H be a Hilbert space with inner product (,) and G be a finite group of
linear isomorphisms of H with m elements. Then for each u € H, the Haar integral operator
on u is given by
Hu =ug = %ZQUEHG and ug =u—ug € H.
9€G

Example 2.3 Let Q C R",(n > 1) be a bounded open set and H = W*2(Q) where k > 0
be the Sobolev space. Let O(n) be the set of all orthogonal matrices in R™ ™. Then it is a
compact group. Let G be the set of all orthogonal matrices g € O(n) such that g(§2) = Q. For
each g € G and u € H, if we define

gu(x) = u(gx), VY €,

then G is a compact group of linear isomorphisms of H. The Haar integral operator H
defines the orthogonal projection operator from H onto Hg. Indeed, if g is represented by an
orthogonal matriz, then g is an isomorphism of H or the inner product is g-invariant, as we
have for all u,v € H,
(gu.ge) = [ 3 (D*u(ge))" (D v(ga)) da
Q
lal<k

(by substituting y = gz and g(Q) = Q, g7 g = 1)

- / > (D u(y) (g")* () (Dv(w)lgl dy = (u.v). |

@ Jal<k
Example 2.4 Let Q) C R" be a bounded open domain. Assume that €2 is symmetric about the
reflections with respect to the first n — 1 azes. Let H = W*2(Q). Define g : H — H by

(qu) (@1, eeey s Tpe1, ) = —U(—T1, ooy —Tp_1, Tpy)-
Then G = {id, g} = Z».

Example 2.5 Let Q C R? be a bounded open domain. Let m > 1 be an integer. For each
point © = (r,0) € Q denote
2T - -
gr=g(r,0)=(r,0 + —) and hx=h(r.0)=(r,—0)
m
2

that is for o = =%

cos(a) —sin(a) _ 1 0
g= and h =
sin(a)  cos(a) 0 —1
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Assume that g(2) = Q and h(Q) = Q. Let H = W'2(Q) be the Sobolev space of functions on
Q with the inner product (u,v) = [(Vu-Vv+uv)dz. Let eo = £1 be fived. For eachu € H,

we define

g(u)(z) = u(gx) and h(u)(z)= eo(hz).

It is clear that g represents a rotation and h represents an even (eo = 1) or an odd (eo = —1)
reflection. The inner product is invariant under both linear operators g and h. To see this let

f denote the operator g or h and the matriz g or h. We have f*'f = I, thus

(Fugo) = [ (Fulfa)" £790(f0) + ulf)olf) do
(substituting y = fx and note f(Q2) = Q, |f| =1)

_ / (V) Voly) + uly)o())| ] dy = {u,v).

We have a finite group
G={g,9%.,9" hg, hg*, ... hg™}

of linear isomorphisms of H which has two generators g and h. The invariant subspace Hg

of H is defined by
Ho={u€ H:gu=u and hg'u=u Vi=1,2,...m}.

For each w € H, the Haar integral operator on u is given by

m

1 , LA
Hu:ugz%(Zg’u+Zhgzu)€HG and us=u—ug € Hi.

i=1 i=1

There are symmetries that cannot be defined by a compact group of linear isomorphisms
of H, such as composite symmetries involving partially defined symmetries. We may identify
those symmetries by using several projections, among which the first one is orthogonal with

which computational error is expected to be minimized.

Example 2.6 Let Q) = [—a,a] X [—a,a] in R? and H = Hg (). We are interested in finding a
critical point u* with the following symmetries. The profile of u* is even symmetric about the
line y=-x, even symmetric about the z-axis for points (x,y) with 0 > y > —x > —a and even
symmetric about the y-azis for points (x,y) with 0 > —x >y > —a. To define the invariant
space, we combine two projection operators T =Ty - T, where

(T)(z.v) = 5 (u(e.) +u(~y. —2)).  (r.) € Q
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is an orthogonal projection from H to Hy, with which computational error is minimized and

u(x, _y), 0 2 Yy 2 —X;
(Tou)(z,y) = u(—z,y), 0> —x >y,

u(z,y),  otherwise.

which is a projection from Hy, to Hy. Note that Ty can map H to outside of H. However T,
projects Hy, into H. Thus T =T, - T1 projects H into Hp C H.

Remark 2.1 When certain symmetries cannot be described by a compact group of linear
isomorphisms such as the case in Example 2.6, it is difficult to analytically verify that if or not
a point u having the symmetries will imply that V.J(u) has the same symmetries. But it can
be numerically checked as follows. Let T represent the projection operator onto H;. The term
VJ(u)—T(VJ(u)) represents the asymmetric part of V.J(u) together with the computational
error. Let € represent the order of the computational error. If ||VJ(u) — T(VJ(u))| ~
e||VJ(u)]|, it means that the asymmetric part is caused by the computational error, not the
asymmetric part of VJ(u). Thus V.J(u) has the same symmetries. Otherwise VJ(u) does

not have the same symmetries.

3 Numerical Examples

In this section, we present several typical numerical examples to illustrate the theory and
the numerical algorithm. Each of these examples has its own feature in symmetry and in the
solution profile. These examples also exhibit two types of mathematical phenomena. The first
phenomenon is about symmetry breaking in terms of some parameters of the problems. In
general, for the problems with the full radial symmetry in R™, there is always a radial solution
for all parameters. When we vary the parameters the problems may or may not have non-radial
solutions. If non-radial solutions appear we say symmetry breaking occurs. We demonstrate
this feature by using autonomous equations with the Dirichlet boundary condition (the Lane-
Emden equation) on thin annular domains as well as for the Henon equation in ball domains.
For the existence of these solutions, some have been proved theoretically and others are still
open (see [5] [4] for more references of theoretical studies). These non-radial solutions tend to
have higher energy and possess large Morse indices. The second phenomenon is about nodal

solutions (sign-changing solutions) for nonlinear Dirichlet problems. Again these solutions
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tend to have higher energy and large Morse indices. The existence of most of these solutions
are still open (see [11] for more references of theoretical studies on nodal solutions). As these
examples show our new numerical algorithm is very powerful in dealing with multiple saddle
points with large Morse indices and is very efficient and stable in dealing with the presence of
symmetries.

To find a saddle point of J, when H is replaced by a J-invariant space H; in LMM, whether
or not the algorithm is stable depends on whether or not the support L in Hj is sufficient.
We will pay special attention to the case where L = {0}, the smallest possible support. So we
have tried to explore the symmetries of a problem to the maximum. It is known that when

L = {0}, our solution set coincides with the Nehari manifold in Hg defined by
M={t,u:u€ Hg,|u|=1,t, >0, VJ(t,u) L u}.

Under some standard conditions, it can be shown [12] that M is smooth and the peak selection
p is unique and C*, which gives us a great advantage to show the convergence of LMM [13].

Let 2 C R? be a bounded open domain. Consider the Lane-Emden equation

(3.1) Au(z) +uP(z) =0, z €,
' u(z) =0, z € 89,

with p = 3 and the Henon equation

(3.2) Au(z) + |z|TuP(x) =0, = €,

u(z) =0, x € 01,
with p = 3 and ¢ > 0. Those two equations have quite different features due to whether or
not depending on x explicitly. The solutions to (3.1) prefer open space, while the solutions to
(3.2) seem to prefer corners.

Though the abstract theory asserts the invariance under general conditions of the group
action, we demonstrate for the examples above how to verify that for certain symmetries, if
u has a symmetry, then V.J(u) possesses the same symmetry. Let G C O(n) be a closed
subgroup and (2 is invariant under the action of G. Let A} < Ay < A3 < ... be the eigenvalues
of —A with Dirichlet boundary condition and E; be the eigenspace corresponding to A;. Then
for u € E;, —Au = M\u. It follows from this that for g € G we also have —Agu = \;gu. That

is, £ is invariant subspace under . This means H; and Hj are both generated by invariant

eigenspaces. Now let f(x,u) = |z|%uP. Then it is easy to verify that

(VJ(u),v) = /QV(u — (—=A) ' f(z,u)) Vvda,
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which implies VJ(u) = u — (=A)~!' f(z,u). Assume u € H; is in the invariant space of the
action G. Then f(x,u) € Hr and we have VJ(u) € Hy if and only if w = (—A)~! f(z,u) € Hy.
Let w = wr + wy with w; € Hy and wi € Hf. Since w solves for —Aw = f(z,u) € Hy we
have —Aw; =0, or wi = 0 and then w € H;. This gives VJ(u) € Hj.

In the examples we shall consider several types of domains:
(a) Q=[-1,1] x [-1,1], a squarer;
(b) © =[—1.5,1.5] x [—1, 1], a rectangle;
(c) Q={(x,y) € R? : 22 + y* < 1}, the unit disk and

(d) Q= {(z,y) € R?:0.7 < y/22 + y? < 1}, an annulus.

The first two types of domains are used to exploit the structure of nodal solutions which are
saddle points of the functional with large Morse indices. The latter two types of domains are
discs and annular domains which will be used to demonstrate symmetry breaking phenomena
and to find non-radial positive solutions while radial positive solutions always exist. Disks
and annular domains are the most symmetric domains in R?, i.e., they are invariant under
the full O(2) symmetry. But the symmetry causes degeneracy, due to the fact that a rotation
of a non-radial solution about any angle is still a solution. Thus the solutions are not isolated
in the whole space H. When symmetry is properly used to define an invariant space Hy, a
solution in H; can be isolated.

It is known that on a disk, the Lane-Emden equation has a unique positive solution as the
ground state which is radially symmetric and has a single peak; while the Henon equation, in
addition to the radially symmetric positive solution which has the highest critical level among
all other positive solutions if exist, may have a non-radially symmetric positive solution. The
existence of a non-radial solution to the Henon equation depends on the parameter ¢, which
is a typical symmetry breaking phenomenon. There may have multi-peak positive solutions.
The number of peaks that a positive solution may have depends on the parameter ¢g. This may
be considered a bifurcation problem with parameter q. Due to high critical level, the radially
symmetric positive solution is the most unstable and therefore most elusive to capture among
all positive solutions by LMM, since it will never get a sufficient support, unless one uses the
radial symmetry to convert it into solving an ordinary differential equation. However, the

method developed in this paper can easily capture this radially symmetric solution.
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We point out that for a numerical computation using symmetry to be successful, it is im-
portant that its discretized mesh points must match the symmetry. In the numerical examples,

e < 107 is used to terminate iterations and an initial guess v} is obtained from solving
Av(z) =c(z),z € Q and wv(z)=0,z € 0N

where c(z) is equal to —1(+1) if one wants v(z) to be convex down (up) at x and is equal to
0 if the profile of v(z) is not of concern at x. In all the figures, J is the critical value. Figs.1-9
are solutions to the Lane-Emden equation and we mainly want to demonstrate a variety of
nodal solutions which are saddle points having large Morse indices. Figs.10-11 are positive
solutions of the Lane-Emden equation on annular domains. Figs.12-27 are solutions to the
Henon equation, for these we explore the symmetry breaking phenomenon here by showing
that as the parameter ¢ increases more and more non-radial positive solutions appear which
should also have large Morse indices. The following is a list of examples for which we used

symmetries to find each of the solutions.

(1) cf. Fig. 1. No symmetry is needed or (Hu)(z,y) = u(x,y). L = {0}. This is a

Mountain-Pass solution and its Morse index is one.

(2) cf. Fig. 3. Either odd reflection about the line y=x or odd reflection about the origin.

This is a solution whose Morse index is at least two in the full space, and its Morse index

is one when restricted in the invariant space.
(3) cf. Fig. 2. Odd reflection about the x-axis. (Hu)(z,y) = (u(z,y) —u(z, —y)). L = {0}.

(4) cf. Fig. 4. Either odd reflections about the z-axis and the y-axis, or odd symmetry
about the rotation by Z. (Hu)(z,y) = 1(u(z,y) — u(—z,y) + u(—z, —y) — u(z, —y)) or
(Hu)(0,7) = +(u(@,r) —u(@+ Z,r) +u(@+m,r) —u(@+ 3, r)). L ={0}. This solution
has Morse index at least 4 in the full space though the Morse index in the invariant space

1S one.

(5) cf. Fig. 5. Odd reflections about the lines y=x and y=-x. L = {0}

(6) cf. Fig. 6. Either even reflections about the x-axis and the y-axis, or even symmetry

about the rotation by 7. L = {u1} and u; is in Fig. 1.
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(10)

(Hu)(z.y) = 1(u(z,y) + u(=2,y) + u(—2, —y) + u(z, —y)) or
(Hu)(0,7) = $(u(®,r) +u(@+ 5,7) +u(@ + m r) +u(@+ 2, 7). This is an example for

which the Morse index in the invariant space is at least two.

cf. Fig. 7. Odd reflections about the x-axis, the y-axis, the lines y=x and y=-x.
H = HiHsHyHy where (Hlu)(xay) = %(u(aj:y) - U’(I'/ _y))a (H2u)($7y) = %(U(l‘,y) -
u(=2,y)), (Hzuw)(e,y) = Hule.y) — uly. @), (Ha)(@,y) = L(ule,y) — u(—y, ).
L ={0}.

cf. Fig. 8. Odd reflections about the x-axis and the y-axis. (Hu)(z,y) = (u(z,y) —
u(—z,y)+u(—z, —y)—u(x,—y)). L ={0}. Since the domain is a rectangle, the rotation
by 7 is not applicable. Contrast to Fig. 4.

cf. Fig. 9. Even reflections about the x-axis and the y-axis. (Hu)(z,y) = {(u(z,y) +
u(—z,y) +u(—z, —y)+u(x,—y)). L ={us} where u; is the single peak positive solution
in the rectangle. This is the same symmetry used in example Fig. 6. It is interesting
to compare to Fig. 6. If we let the rectangle [—1.5,1.5] x [—1,1] change gradually to
the square [—1,1] x [—1, 1], e.g., [-1.01, 1.01] x [—1, 1], the solution remains of the same
profile; It is an interesting observation. If we compare the critical values, profiles and
symmetries of Figs. 4 and 6 with that of Figs. 8 and 9, we note that their sequential
orders in critical level and profiles have changed drastically due to even a slight change

in the geometry of the domain.

cf. Fig. 10. Rotation symmetry by 2. (Hu)(0.7) = $(u(0, r)+u(0+2, r)+u(0+F,r)).
L = {0}. Such a solution failed to be captured in [12] due to the fact that without using
the symmetry, a sufficient support L in H contains infinitely many saddle points at lower
critical level. We observe that the solution generated not only has the Z3 symmetry it
also has the additional symmetry of being even about the rotation by %“ Thus the
solution has D3 symmetry as well. With our new algorithm we may capture, in a stable
way, solutions with D, symmetry for any prime number k. The Morse indices of these
solutions should be large depending upon the number of peaks k. This is related to the
symmetry breaking phenomena for radially symmetric elliptic problems. The existence
and qualitative behavior of these solutions can be found in [5] and references therein. A
rotation of the solution by any angle is still a solution. It is a degenerate case. However,

adding an even symmetry about the x-axis can bypass the degeneracy.
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(11)

(12)

(13)

(14)

(15)

(16)

cf. Fig. 11. Same symmetry as in Example 2.6. The existence of such solution is still
open. Following Remark 2.1, it has been numerically checked that for each v* = p(u¥) €
Hjy generated by LMM, we have VJ(v*) € Hy, i.e., the invariant subspace Hj is well-
defined. However, this problem is degenerate and also ill-conditioned in the sense that
if we fix one peak and move another peak around, the change in the function value J is

almost invisible.

cf. Fig. 12. No symmetry is needed. L = {0}. This radial solution should be the unique

positive solution to (3.2). A non-radial solution can be found for ¢ > 1.

cf. Fig. 13. No symmetry is needed. L = {0}. However adding an even symmetry about
the x-axis will bypass the degeneracy. This is the least energy solution of the problem

and this exhibits the phenomenon of symmetry breaking of ground state solutions ([4]).

cf. Fig. 14. Even symmetry about the origin or rotation by 7. (Hu)(z,y) = %(u(a:, y) +
u(—=z, —y)). L = {0}. Such a radially symmetric solution is impossible to capture with-
out using the symmetry since it has the highest critical value among all positive solutions
and a sufficient support L in H needs to contain infinitely many positive solutions. A
traditional way to find this solution is to use the radial symmetry to convert it into an
ODE. On the other hand, this also shows that for small ¢ (in this case ¢ = 3) the radial
solution is still the least energy solution in the class of even functions, and when we
increase q to ¢ = 4 as in the next example, the radial solution is going to lose its stability

and the least energy solution becomes non-radial again.

cf. Fig. 15. Either even symmetry about the origin or even symmetry about the rotation
by 7. (Hu)(z,y) = 1(u(z,y) + u(—z,—y)). L ={0}. Adding an even symmetry about
the x-axis or y-axis will bypass the degeneracy. A symmetry about the rotation by %”
with L = {0} will generate the radially symmetric solution. From this example on, the
solutions demonstrated should have large Morse indices depending upon the number of

peaks of the solutions.

cf. Fig. 16. Symmetry about the rotation by 2* with L = {0}. (Hu)(0,r) = 3(u(f,r) +
w(@+ 2. r) +u(@+ 4. r)). Adding an even symmetry about the x-axis will bypass the
degeneracy. A symmetry about the rotation by £ with L = {0} will generate the radially

symmetric solution. This implies the radial solution is the ground state in the class of
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functions invariant under 74, but is not the ground state in the class of Zs-invariant

functions.

(17) cf. Fig. 17. Symmetry about the rotation by Z with L = {0}. (Huw)(0,7) = 3(u(d,7) +
uw(@+Z,7) +u(@+ Z,r) +u(@+ 2, r)). Adding an even symmetry about the x-axis or

y-axis will bypass the degeneracy.
(18) cf. Fig. 18. No symmetry is needed or Hu(x,y) = u(z,y). L = {0}.

(19) ¢f. Fig. 19. Even reflection about the y-axis. (Hu)(z,y) = 3(u(z.y) + u(—z,9)).
L ={0}.

(20) cf. Fig. 20. Even reflection about the line y=-x. (Hu)(z,y) = (u(z,y) + u(—y, —)).
L ={0}.

(21) cf. Fig. 21. Even reflection about the x-axis and the y-axis. (Hu)(z,y) = }(u(z.y) +
u(—z,y) + u(—z, —y) + u(z, —y)). L ={0}.
(22) cf. Fig. 22. Odd reflection about the y-axis. (Hu)(z,y) = 3(u(z,y)—u(—z,y)). L = {0}.

(23) cf. Fig. 23. Odd reflection about the line y=-x. (Hu)(z,y) = (u(z,y) — u(—y, —2)).
L = {0}.

(24) cf. Fig. 24. Even reflection about the y-axis and odd reflection about the x-axis. L = {0}.

(25) cf. Fig. 25. Odd reflections about the x-axis and the y-axis. (Hu)(z,y) = 1(u(z.y) +

(26) cf. Fig. 26. The same symmetry used in finding Fig. 7. L = {0}.

(27) cf. Fig. 27. The same symmetry as in Example 2.6 and also in (11). It is an interesting
example, since its symmetry is partial and cannot be described by a compact group.
Theoretically the existence of such a solution is still open. However we are able to follow
Remark 2.1 to numerically verify the invariant subspace in the sense of Definition 2.1.
For each v* = p(u*) € H; generated in LMM, we find that the asymmetric part of
d* = VJ(v") satisfies ||Asymmetric part of @[z = 2. - 107*(|d*|| ;. Thus we are very

optimistic about the existence of this solution.
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