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1. Introduction

This paper is concerned with Hardy and Hardy-Sobolev type inequalities with
remainder terms. In particular, we shall focus on the following Hardy—Sobolev type

inequalities due to [7]. For all ue Cg° (RM) it holds

2
/ |x|—2a|Vu2dX>CaJ;</ |x—bp|u|1’a’x)p7 (1)
RV ' RV

where
for N>3:a<¥2  a<b<a+l, P =
for N =2:a<0, a<b<a+1, P == 2)
for N = lia< =} atd<bsatl, p==rdiy

Let D!*(RY) be the completion of C¢° (R") under the norm
Julf = [ 1V d, o)
RV
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which is given by the inner product (u,v) fRN |x|72”Vu Vv dx. Then (1) holds for
ue DI2(RY). Define the best constant

—2a 2
Vul d
S(a,b) = inf Juov WLVl dx

DI (EY)\{0) -4 ; @
“ (S Il )

Then it is known that S(a,a+ 1) = (=32 2ay? is never achieved and that for N >3,
0<a<¥32 a<b<a+1, S(a,b) is achleved only by radial functions (in the case of
a=b= 0, up to a translation in R"), which are given by

N-2
CU)(x) = CL 2 U(ix), (5)
where CeR, 1>0 and

N—-2+4+2(b—a)
2(1+a-b) (6)

with ko being chosen such that ||U||fl = S(a,b) (see [9]).
To motivate our discussion, let us start with the Hardy inequality for the special
case a =0, b = 1. In this case (1) gives for N>3, ue D"*(R"),

2
/ |Vul® dx><N 2)/ u—zdx.
2 ) Jor ]

This inequality still holds for ue H}(Q) for any bounded domain Q. Using a very
delicate argument, Brezis and Vazquez first discovered the following improved
version of the inequality in bounded domains.

Theorem A (Brezis and Vazquez [5]). Let N>3, Q< RY bounded. Then there exists
C = C(Q)>0 such that for all ue H}(Q),

wull (Y52) ||l )

From this result, they deduced that for any 2<g<-2%

N-2
> (N2 >

IVl = (=5=) ||| clul; (8)

for some C = C(gq,2)>0, and that ¢ cannot be replaced by 5. Very recently,

Vazquez and Zuazua obtained an improved version of this result
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Theorem B (Vazquez and Zuazua [14]). Let N=3, and 1<qg<2. Assume Q is
bounded. Then there exists C = C(q,Q2)>0 such that, for all ue H}(Q),

N =2\ -1 |12
9l = (M52 [t o] ctiwal o)

Here g cannot be replaced by 2.

Motivated by and related to the above results, our first result here improves the
above Theorems A and B, and covers the weighted version as well. To avoid
confusion of notations, we define

Il
Y

D*(Q) = Cf (Q) (10)

where ||.|| is given in (3). Here Q is a domain in R" (not necessarily bounded). Note
that when Q is bounded, D(l)‘2 (Q) = H} (). Whenever without confusion, we shall
use ||.|| for the norm in (3) with a relevant a<%52 in place and a domain Q<R" in
the context. The symbol |.||, will be used to denote L(Q2) norm when @ is clear in
the context.

Theorem 1. Let N>1, a<®32. Assume Q< = Bg(0) for some R>0. Then there exists
C = C(a,Q)>0 such that for all ue D}*(Q),

B N—-2-2a\*|| 2
il (Y52 [,

R\
(m _) x|V
|x]

-1
Moreover, when 0€Q the inequality is sharp in the sense that (ln \_RI) cannot be

replaced by g(x)In (ﬁ)

2
=C

(11)

2

1
with g satisfying |g(x)|— oo as |x|—0.

In the case a = 0, by using Holder inequality, we see (11) implies Theorem B. Our
approach is quite different from that in [5,14], in some sense simpler and easier to be
adapted for the weighted versions. Following the idea used in [8], we convert the
problem from RY to one defined on a cylinder ¥ = R x S¥~'. From there an
inequality similar to the classical one-dimensional Hardy inequality on (0, c0) is
used to tackle the technical part of the proof. We also note that while the sharpness
of Theorems A and B is open-ended (for q<% and g<2, respectively), the

1
sharpness in Theorem 1 is close-ended in the sense (ln %) cannot be replaced by

(lnﬂ)_d for d<1.

]
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-1
We take Q= = Bg(0) just to avoid the singularity of (ln ﬁ) at |x| = R. Here we

are interested in the singularity at zero. In fact, if we take d >0 such that Bs;(0) = Q,
then it holds for all ue D!*(Q),

w2 N—2-2a\?% _
Il (5 [fle

2
LX(Q)
- 2
= C|[1x]"“Vul[ 120,80
for some C>0 (see the second remark in Section 2).
Using similar ideas, we give another result of the same spirit, which works for

bounded domains as well as exterior domains. It also takes into account the
singularity of In % at |x[ = R.

Theorem 2. Let N >1, a<*52 Assume Q< Bg(0) or Q< B§(0) = RY\Bg(0). Then for

all ue D1 (Q),

2

R\ !
<1n—> x|~y
|x]

This inequality is sharp in the sense that <ln ‘—’j‘) cannot be replaced by g(x) <1n ﬁ)

cee 2 (N =2=2a\"|, s |2
it (Y52 [

2
1
2_

; (12)

2

with |g(x)|— oo as |x|—>0 when 0€Q (by g(x)(ln‘—’;‘)*1 with |g(x)|— oo as |x|—

when Bg(O) Q). The best constant § is then also sharp.

For a=0, this was proved recently in [1] (see also [6]) under condition
Qc B, 1z(0) and no estimate on the best constant is given there except for a = 0,
N =2

Next, we turn to Hardy—Sobolev type inequalities which correspond to a<b<a +
1 in CKN inequality (1). Recall the norm on L (Q) is defined by

s ul dx

T
N

[leelly = sup

where ¢ is the conjugate exponent of ¢, i.e. é + % = 1 and S <@ has a finite measure.

Theorem 3. Let N>3, 0<a<®32 a<b<a+1,p :ﬁm. Assume QRN s

bounded. Then there exists C = C(a,b,Q) such that for all ue D}?(Q),
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—a 2 -b 2 —a_ 12
etV =S a. )| lx| ]| > Clle| il sy, (13)

and

2
etV =5 )| ||| > Clllxl =Vl (14)

Moreover, the weak norm on the right-hand side cannot be replaced by the strong norm.

For a = b =0, (13) was proved by Brezis and Lieb [3] (see also [4], and also by
Bianchi and Egnell with a different proof [2]). For a =0, 0<b<1, (13) was proved
by Radulescu et al. [12]. For a = b = 0, (14) was proved in [3].

Our approach to prove Theorem 3, though follows the idea in [12,13], but
improves theirs. Without using Schwarz symmetrization, our approach is easily
adapted for the weighted versions. Moreover, our method can be used to establish
results like (13) in unbounded domains. This partially addresses a question raised by
Brezis and Lieb [3].

In order to state our results for unbounded domains, let us define for a domain
QcRY,

2
2@ = e doVH
pir@  Jou

We say Q satisfies (Qy) condition if there exists an open cone with its vertex at 0, Vy,
such that for some R>0, Q€ o (V;\Br(0)). We say Q satisfies (Q;) condition if there

exists an open cone at 0, Vp, such that for some R>0, for all yeQ, Q> (y+
Vo)\Br(»).

Theorem 4. Let N =3,4, QcR" satisfy (@) and 7,(2)>0. Then there exists
C = C(Q)>0 such that for all ueD(l)’z(Q)7

[IVull3 — S(0,0)]|u

2 2
2> Cluly_
N-=-2

and

2

[[V7u][3 = S(0,0)]|u 2*>CHV”||% :

W

Theorem 5. Ler N >3, max{0,%54} <a<®3% a<b<a+1,a+b#0,p = #%HI).

Assume Qc RN satisfies 11(Q)>0 and condition (Qy). Then there exists C =
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C(a,b,Q) such that for all ue D}*(Q),
—a 2 -b 2 —a_ 112
x|Vl 3=, ) || u| | > Cllix~ull> y_
p N-2—a
and

2
— 2 —b — 2
137Vl —S(a,5)| |13l | = Clllxl“Vall -
P N—-l-a

Typical domains that satisfy 1;(Q) >0 and (Q) or (2,) are strips or sub-domains
of strips. Here by strip we mean domains that are bounded in at least one direction.
We shall discuss more on this in Section 4.

Due to the translation invariance in Theorem 4, we need the stronger condi-
tion (Q).

2. Hardy inequalities with remainder terms

We prove Theorems 1 and 2 in this section. The idea is to use a conformal
transformation to convert the problem to an equivalent one defined in a domain on a
cyliner € = R x S¥~!. This idea has been used in [8] to study the symmetry property
of extremal functions for the Caffarelli-Kohn—Nirenberg inequalities (1). More
precisely, to a function ue Cg° (Q\{0}) we associate ve Cj° (Q) by the transformation

N-2-2a X
() = ] (o ). (15)
x|
where Q is a domain on % defined by
(1,0) = <—ln |x|,i|>efz = xeQ. (16)
X

In [8], it was proved that when @ = R", the above transformation defines a Hilbert
space isomorphism between D!>(R") and H'(%) whose norm is given by ||v| \ip% =

2 o
So (170 + (8=2220)02) d.
Using the same computation, we have

Lemma 1. Let N>1, a<®52 Q<R a domain. Then under the transformation (15)

2
/|x|72“|Vu|2 a’x:/~ |Vol” + <1\722a> 02] du
Q o

2
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/|x|72<a+1>u2dx:/~|v|2d,u.
Q o

Let €, (4, resp.) denote the domain on ¢ with ¢ component positive (negative,
resp.).

and

Lemma 2. Let N>1 and Q=% or Q=%_ be a domain. Then for all ve C{° (Q),

2 1/02
=>- | =du. 1
1wl duzg [ Sau (17)

Moreover Y is the best constant if [L, 0) x SN"'<Q or (=0, —L] x SN"1<Q for
L>0.

Proof. This is a version of the classical Hardy inequality adapted for the cylinder

case. For ve Cj° (Q),

1 1

w0 2 0 0 .2 2 0 2

/ ”(’;H)dt:fz/ W’dt<2</ l’zdz) </ vfdz> .
0 t 0 t 0 t 0

0 Uz [,9 0
/O (z2 )dt<4/0 v3(1,0) dt.

Integrating on SV~! gives the result. Since % is the best constant for the classical one-
dimensional Hardy inequality (see [10]), the optimality is proved by considering
functions depending only on ¢. [

Thus

Lemma 2 implies that if Q=% or Q<% _, the completion of C¢°(Q) under the
norm 4/ [ Vu|2 du is well defined, even for N = 1, and 2. We denote this space by
DY (D).

Proof of Theorem 1. A simple scaling argument shows it suffices to take R = 1. Let
Yo = MaXyeq |x|. Then yy< 1. By Lemma 1, under transformation (15), it suffices to

show that there exists C>0 such that for all veD(l)’2 (Q),

1 N—-2-2a \°
/~|V1;|2d,u>C/~ 12[|ng|2+(1),+201;> 10’#.
Q Q
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But by Lemma 2

1 N-2-2a\’
/gt_Z |V0v|2+<v,+fv) ]du
2 - 2a\’
<2 / |Vo)? d,u—&—Z(%) 4/vfdu
lnyo Q

<2 +2(N =2=2a)| [ |V dp.
2 -
(Inyo) Q

To show the sharpness part of the theorem, assume g(x) satisfies |g(x)|— + oo as
|x| = 0. We may assume

9] _
Ix|-0 |In|x]|

Now it suffices to construct v, eD(l)’z(Q) such that

Ja |VU,,|2 dp
lg(e ) |? avn N-2-2a \°
f t |V n| + 81 72 Uy d,u

Let R,— o0, and # be a function defined on [0, o0) such that 5(7) =1, 0<r<1,
n(t) =0, t=2, |y ()| <2. Define

0(1,0) = n(%)

Then for n large, v, eD(l]'z(Q) since Q contains [L, o) x S¥~! for some L large. Then,

—0, asn— .

) 6R, 1 5
A, :/|an| d,u<C/ ﬁ( 0" de<

n

<
R,
e o, —2-2a \?
e [ bm« et
2
2

2
72> 02+ (N —2—2a)v, %> dt.

5R, —
n |g t % N
>C/ ot + ot

du

Then

6R, -2 2
" lg(e )| (O _ (1
/BRn 5 T dt =o0 r) as n— oo,
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and choosing 0<f <1,

5R, —1\|2
/ gle™)| o, 9on 4
3 2 ot

Rﬂ

—1\|2 2 —1\12(2—
< [l (on L PRl
=L 28 ot 5 12(2-B) "

R, Ry

! gl )P
= o) o [T

EEAV

Then
5R —1y|2
"lgle I > 1
B,z C dt—o| —
! /3R,, 12 vn ¢ Rn
>cf inf lge)P) ~— o+
i t>3R, g\e R, ¢ R,
Therefore,
-1
ﬂS - CR”2 -0, n- w.
B, C(inf,>3r, lg(e )| )R, + o(1)R;!

The proof of Theorem 1 is complete. [

Remark. From the proof, C = C(a,Q) can be taken as

-1
((mi 7 +2(N-2— 2a)2> :
0

Remark. If we take Q\B;s(0) on the right-hand side for some d>0, @\B;(0) is a
bounded domain in ¥, so the z-component has positive upper and lower bounds.
Thus we get for some C = C(a,Q,5)>0,

a2 N —2-2a\’ —(a+1) ’2
b= (g ) [fl e

—a 2
= Cl||x]""Vull 1205, (0))-

Proof of Theorem 2. Again we may assume R = 1. Let us assume a<¥ first. It
suffices then to use Lemmas 1 and 2.

Since the constant on the right-hand side is , which is independent of a <%32, we
may send a—»JVT*2 in the inequality. This can be done first for smooth functions, i.c.
for all ue Cj° (Q), with a = 252, (12) is satisfied. This implies D}?(Q) with a = £ is
well defined and |||x| “Vu||, can be taken as its norm. Now a density argument

finishes the proof for the case a = NT‘Z
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For the sharpness of the weight, we use the same test functions v, as in the proof of
Theorem 1. Then it is easy to see

ff)'VU”'zdﬂ < ¢ -0, asn— o
LR g e lae OF
Q 12 n

Finally, the constant % on the right-hand side is the best constant by Lemma 2. [

3. Hardy-Sobolev inequalities with remainder terms

In this section we consider the weighted Hardy—Sobolev inequality (1) on
DIA(RY),

—a 2 —b |7
st~V =St b) | lx ]| >0
for the parameter range: N>3, 0<a<®32 a<b<a+1, p= #12\[(177‘1)6(2,2*],
where 2* = 2%, Recall from introduction that the best constant S(a, b) is achieved

by the functions given in (5) and (6). Thus the minimizers for S(a, b) consist of a two-
dimensional manifold .# = D!?(R"). Let us define

d(u, 4) = inf{|||x| "V (u — CU;)||: CeR,i>0}.

We need the following result first which generalizes the results in [2,3] for the case
a = 0 to the case a>0.

Theorem 6. For N>3, 0<a<®2 a<b<a+1, p= there exists C =

3
C(N,a,b) such that for all ue D}?(R"),

2N
N—2+2(b—a)’

2
x|Vl (a.8) |1l | > Cd(u.0). (18)
»
We first consider the eigenvalue problem

{ —div(]xVu) = 2x| P Uru (19)

ue D2(RN).

Lemma 3. Let a>0, a<b<a+ 1. The first two eigenvalues of (19) are given by
A1 = S(a,b) and J> = (p — 1)S(a, b). The eigenspaces are spanned by U and |, U,
respectively.
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Proof. It is easy to check that U and ﬁ ,—1 U, are eigenfunctions corresponding
to S(a,b) and (p —1)S(a,b), respectively. Then it suffices to show that any
eigenfunction corresponding to an eigenvalue 1< (p — 1)S(a, b) has to be radial. Let
¥, i=0,1, ... the sequence of spherical harmonics, which are eigenfunctions of the
Laplace-Beltrami operator on S¥': — A ¥, =0,¥;, 60=0, 6, = - =0y =
N —1, oyr1>0y. Let u be an eigenfunction corresponding to an eigenvalue
2<(p —1)S(a,b). We shall show for all i>1,

/ u(r,0)¥:(0)do = 0.
SN-1
Let ¢; = [gv u(r,0)¥:(0) df. Then we can check

. - “24-1 0 .
div(|x| ) = = 2alx| " g+ x| 4,0,

2a—1 @

_ /S {x|2“A,,u(r,0)—2a|x| - (r,e)] ¥,(0) do

. —2a \x|72“Agu
= / div(|x| 2 Vu) — =5
SN-1 r
—2a ..

r g;

_ / U (0) do + / u?,(0) do
SN-1 SN-1

= (r_z"_zo,- — rbr U”_z)(pi.

w,(0) do

Then for any R>0,

ou ou
0= div(|x| Ve,) ==+ (r P UP~2 — r7226))p, ==| dx.
[ [ ve) T 20,0, 2

The first term can be calculated as follows:

/ div(|x| **V,) U, dx
Br(0)
. iy 2 X
— [ v V@D Ay [ (VU ) du
Br(0) OBRr(0)

X
+ U |x| 7V, =) du
o (1Yo %)

do.
:/ 0, div(|x| 2V (U,)) dx + / R‘Q"(Uf (P'_U,,,(,)i) a
Bx(0) 9B (0) dr



Z.-Q. Wang, M. Willem | Journal of Functional Analysis 203 (2003) 550-568 561
And using equation —div(|x| 2V U) = S(a,b)|x| " Ur~!, we have
/ o; div(|x| >V (U,)) dx
BR(0)

:/ 0 diV<|x|_2”U,, E) dx
Bg(0) r

= / 0, [Nr’z"’1 Up + x| Uy — (2a + 1)r2¢7! Ur,ﬁ} dx
Br(0)

—2a d(2aU,,_N— 1 Ur

= (N =2a— 1)1, —

— S(a, b)r-trt Up—l)} dx

rr r - 1 rr r
= / ; [(N —2a—1)r 2y, +r 2 <2arU 5 Ur_ G )(VZU u)
Br(0) r r

+ (bp — 2a)S(a, b)r P2 tyr=t _ p=r+2 () _ 1)S(a, b)UP2 U,)] dx

N—-1-2
= / P —2a U, + / (bp — 2a)S(a, b)r r-1ur~'o,
Br(0) r B(0)

—(p—1)S(a,b) / P UrTt UL,

Br(0)

Putting all these together, we get

do-
0= / R2“<U, Pi _ U,,(p,.> du +/ @ 23N — 1 —g; — 2a)U, dx
2Bx(0) dr Br(0)
+ / (bp — 2a)S(a,b)r "1 UP ¢, dx
Bg(0)

+ (A—=(p—1)S(a,b)) / P UP2 UL, dx.
Br(0)
Let R be the first zero of ¢; with R = + oo if ¢; is not zero anywhere. Without loss of

generality assume ¢;(r) >0, re (0, R). Then % (R)<0. Thus the first and the forth

terms are non-negative and the second and the third are positive unless ¢; = 0 since
bp —2a>0 for a>0. The proof is finished. [

Lemma 4. For any sequence (u,)<D)*(R¥N\A such that inf,,|||x|_”Vu,,||§>O and
d(up, M) —0, it holds

—a 2 b |2
x|, =S (a, b) ||[x] " un )

lim =>1-—
n— oo d(unwﬂ)
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Proof. First we assume d(uy,,.#) = |||x| “V(u, — U)||,. Since v, =u, — U is
orthogonal to the tangent space of ./,
U/l}a
=1

d
Ty M = span{U,q
di|,

we have by Lemma 3,
I3 / x| 7P UP202 dx <|||x| "V oul 5= d (tn, ).
Let d, = d(uy, .#). Using the equation —div(|x|*VU) = S(a, b)|x| "7 UP~!, we get
/|x|*b1’|u ” dx = / |x|*bPUP dx+p/ x| ur-ty
=) / x| U202 dx + o(d?)

]_7 ;\42 2 2
2 5(a by, ol

Il
+

Then,

Jo  d?
—b 2 2 n
Il <142

S b) +o(dy).

By |||x| “Vu,||3 = S(a,b) + d2, we have

—a 2 —b
]~V ;=S @, b)| | 1|

2
> <1 —’b)d3+o(a’§).
p /3

For the general case, d(u,, #) = |||x| "V (u, — C,U,,)||, for some C,eR, 1,>0. We
can use the invariance of the inequality by dilations to reduce it to the special case
above. We omit it here. [

Proof of Theorem 6. If the theorem is false, we find (u,) = D}*(RY)\.# such that

—a 2 b 2
x|~V =S @, b)| | Fx| s
L 0.

d(tty, M)

We may assume |||x| “Vu,||5 = 1 and thus L = lim,, . d(u,,.#)€|0,1]. Then

|~ sta. )
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By a concentration-compactness argument [11,15] we can find 4,>0,

N—2-2a
dn 2 up(Anx)— Ve in DIA(RY).

This implies L = 0, a contradiction to Lemma 4. [

Proof of Theorem 3. Assume that (13) is not true. Then there exist (u,) = H} () such
that

2
etV ;=S e ) [ lx| o

- 3
™ “unl|~_
N-2—-a

We assume |||x| “Vu,|[5 =1 and [[|x] “u,||> » , is bounded by Sobolev’s
I —

inequality. Then ||\x|7”u,,||12,—>S(a,b)7l. By Theorem 6, there exist (Cy, 4,)— (1, 0)
such that

d(un, M) = |[|x|"*V (up — C,U,,)

0.

A direct computation shows

Ay, M)} = C2 / 2V U, P dx

[x|=>1

_ C;LN—2—2a/w r72a(1 + (inr)2)72(ﬁ+l)(;Lnr)Z(ocfl)/?erl dr
1
0
:C/ S—2a(1 +S1)72(/3+1)52(a—])SN—] ds
2

n

> Ciiaﬁ(Nfz)

)

where C>0 is a constant independent of n.
Therefore,

x| “unl]
L=2=4(q)
<X (un = GU)I v HIIXITCULI v
LY=2=a(q) LV=2-a(q)
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<X (un = GU)I| av HIGIXI U _ v
IN-2(Q)

L{Y*Z*d(RN)
» 2a—(N-2)
< Cl[|x["(un — C U3 )| 2n V‘*‘Cnln |x[ 2=« U
LN=2(RY) P
2a—(N-2)
SCd(unaﬂ)‘f'Cn/ln 2 |||x|7aUH N
N-2—-a
< Cd(uy, ).
This is a contradiction with Theorem 6.
Since, by a direct computation
20-(N-2)
I GVULILw = Cuda 2 I VUI_x_,
N—-1-a N—-l-a

we obtain (14) by a similar argument. [

4. Hardy—Sobolev inequalities with remainder terms on unbounded domains
This section is devoted to proving Theorems 4 and 5. We need a few preliminary
results.
When a = b = 0, the manifold of minimizers for S(0,0) is a N + 2 dimensional,
given by
A(0,0) = {CU;(. +y)| CeR, 2>0,yeR"}

U is given in (6) with a = b = 0.

Lemma 5. Let N>3,a=>b=0. Assume Q satisfies condition (Q1). Then there exists
C = C(Q)>0, such that as 21— o0,

inf [|VU(x + )| 729> CA7.
yeQ

Proof. Just note that |V U, (x + y)| is radial in |x + y| and there exists C >0 such that
as ,— oo,

VU gy > €2, O

Similarly, we have
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Lemma 6. Let N =3, 0<a<¥, as<b<a+1,a+ b#0. Assume Q satisfies condition
(Qo). Then there exists C = C(2)>0 such that for U)e.#(a,b) as 1— 0,

[1X]™V Uy [2(ge) = €Y,

Lemma 7. Let N>3, 0<a<®3% a<b<a+1. Let QcR" and
P:D'2(RV)—D'2(Q) be the projection operator. Then for any Ue.#(a,b),
0<PU<U in RY.

Proof. PU is given by PU = U — v where v is the solution of

—div(|x| Vo) =0 in @,
v=U on 0Q.

Then PU satisfies

—div(|x| " *V(PU)) = S(a,b)|x| PUP" in Q,
PU=0 on 0Q.

Then P(U)=0 in Q for otherwise, assume P(U)<0 in Q_<Q. Multiplying the
equation by PU and integrating on Q_, we get

x|~V (PU) = S(a, b) / x|~ Ut P(U) <0,
Q_ _

which says PU = constant in Q_. Then PU =0 in _ a contradiction.
Also v satisfies v=0 in Q. Then PUSU. O

Lemma 8. Let /,(2)>0. Then 3C>0, for all ue D1-*(Q),

11l ull 20y < ClI 1™Vl ()

Proof. Since D!?(Q) = Cy (Q\{O})H H", we need only consider ue Cg° (2\{0}). Then
|x| “ue C;° (2\{0}). But for all ve Cy° (2\{0}),

/UZ<AI/WU|2.
Q Q



566 Z.-Q. Wang, M. Willem | Journal of Functional Analysis 203 (2003) 550-568

Therefore, using Hardy inequality,

[ i< [ 90
Q Q
S / @722 2V

Q
< c/ M2 VaP. O
Q

Proof of Theorem 4. Assume that Theorem 4 is not true. Then there exist
(un) cgé’z(Q) such that

[[Vtlly — S(0,0)] |y

||”n||2N
N2V

2
2%

-0, n- 0.

We assume ||Vu,||, = 1. If N =4, we have, by assumption,

[|utnl|_n
N-2

w<||un||%<c||vun||2 =C.

If N = 3, by Hoélder inequality and Sobolev inequality, we have

-2

1
2%

Netall s < fotnl |y < |2t 5] 14
N_2" N—2

< C||Vu,l|, = C.

Then |[|u,]|3. S '(0,0). By the proof of Lemma 1 in [2], there exists
(Cy2n)— (1, 0) and (y,) =Q such that

d(un, M) = ||V (uy — Up)|| 2z >0, n— o0,

where U, = C,U(4,(. — y,)). By Lemma 5,

d(un,,/%)2>/ |VU,|*dx=>C 22>V,
Q¢

Using P: D(l]’2 (RY) —»D(')’Z(Q) as the projection operator, we have

all v _ < Vttn = PUL|| w_+ [|PUJ| v _
N—-2 N-2 N-2

W

< C|[V(un — PU)||20) + ||PU”||NIX2,W

< C||V(un - UH)HLz(RN) + ||PU””%,W'
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It follows from Lemma 7 that

2N
IPUN| v <IIGl| v <Cadn? [|U]] w_
N-=2 L{V—z(RN) L,],,V_Q(IRN)

Hence

lall v, < ey, 42).
N-2

This is a contradiction with the Theorem in [2]. The proof of the second part of
Theorem 4 is similar. [

Proof of Theorem 5. Assume that Theorem 5 is not true. Then there exist
(u,) = 21?(Q) such that

2
stV |38 e ) [ lx| |

— -0, n-o0.
e[ nl|~
N-2

W

We assume |||x| “Vuy,||,= 1. Using (1) and Lemma 8, we obtain

o™ uall v <[l uall__w
w

N2 2 N2 2a

- i - 1-2

< 1™ |36t

< C|||x]“Vuu| 3= C.

Then H|x|7bu,,

2
—S~!(a,b). By Theorem 6, there exists (C,, 4,)— (1, 00) such that
P
d(uy, M) = ||[x]"V (uy — CyU;, )| 2@y >0, 11— 0.
By Lemma 6,

d(“n;ﬂf}Ci /QC |x|7a|VUin|2 dx=>C C315a+27N‘

As in the proof of the preceding theorem, we obtain a contradiction with
Theorem 6. [

Remark. It is easy to verify that unions of a finite number of strips satisfy conditions
}1(9) >0 and (.Ql)
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