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1. Introduction

This paper is concerned with Hardy and Hardy–Sobolev type inequalities with
remainder terms. In particular, we shall focus on the following Hardy–Sobolev type

inequalities due to [7]. For all uACN

0 ðRNÞ it holds

Z
RN

jxj�2ajruj2 dxXCa;b

Z
RN

jxj�bpjujp dx

� �2
p

; ð1Þ

where

for NX3 : aoN�2
2
; apbpa þ 1; p ¼ 2N

N�2þ2ðb�aÞ;

for N ¼ 2 : ao0; aobpa þ 1; p ¼ 2
b�a

;

for N ¼ 1 : ao� 1
2
; a þ 1

2
obpa þ 1; p ¼ 2

�1þ2ðb�aÞ:

9>>=>>; ð2Þ

Let D1;2
a ðRNÞ be the completion of CN

0 ðRNÞ under the norm

jjujj2 ¼
Z
RN

jxj�2ajruj2 dx; ð3Þ
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which is given by the inner product ðu; vÞ ¼
R
RN jxj�2aru 	 rv dx: Then (1) holds for

uAD1;2
a ðRNÞ: Define the best constant

Sða; bÞ ¼ inf
D
1;2
a ðRN Þ\f0g

R
RN jxj�2ajruj2 dx

ð
R
RN jxj�bpjujp dxÞ

2
p

: ð4Þ

Then it is known that Sða; a þ 1Þ ¼ ðN�2�2a
2

Þ2 is never achieved and that for NX3;

0paoN�2
2
; apboa þ 1; Sða; bÞ is achieved only by radial functions (in the case of

a ¼ b ¼ 0; up to a translation in RN), which are given by

CUlðxÞ ¼ Cl
N�2
2 UðlxÞ; ð5Þ

where CAR; l40 and

UðxÞ ¼ k0ð1þ jxjaÞ�b; a ¼ 2ðN � 2� 2aÞð1þ a � bÞ
N � 2þ 2ðb � aÞ ; b ¼ N � 2þ 2ðb � aÞ

2ð1þ a � bÞ ð6Þ

with k0 being chosen such that jjU jj2a ¼ Sða; bÞ (see [9]).
To motivate our discussion, let us start with the Hardy inequality for the special

case a ¼ 0; b ¼ 1: In this case (1) gives for NX3; uAD1;2ðRNÞ;Z
RN

jruj2 dxX
N � 2

2

� �2Z
RN

u2

jxj2
dx:

This inequality still holds for uAH1
0 ðOÞ for any bounded domain O: Using a very

delicate argument, Brezis and Vazquez first discovered the following improved
version of the inequality in bounded domains.

Theorem A (Brezis and Vazquez [5]). Let NX3; OCRN bounded. Then there exists

C ¼ CðOÞ40 such that for all uAH1
0 ðOÞ;

jjrujj22 �
N � 2

2

� �2

jxj�1u
			 						 			2

2
XCjjujj22: ð7Þ

From this result, they deduced that for any 2pqo 2N
N�2;

jjrujj22 �
N � 2

2

� �2

jxj�1u
			 						 			2

2
XCjjujj2q ð8Þ

for some C ¼ Cðq;OÞ40; and that q cannot be replaced by 2N
N�2: Very recently,

Vazquez and Zuazua obtained an improved version of this result.
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Theorem B (Vazquez and Zuazua [14]). Let NX3; and 1pqo2: Assume O is

bounded. Then there exists C ¼ Cðq;OÞ40 such that, for all uAH1
0 ðOÞ;

jjrujj22 �
N � 2

2

� �2

jxj�1u
			 						 			2

2
XCjjrujj2q: ð9Þ

Here q cannot be replaced by 2.

Motivated by and related to the above results, our first result here improves the
above Theorems A and B, and covers the weighted version as well. To avoid
confusion of notations, we define

D1;2
a ðOÞ ¼ CN

0 ðOÞjj:jj; ð10Þ

where jj:jj is given in (3). Here O is a domain in RN (not necessarily bounded). Note

that when O is bounded, D
1;2
0 ðOÞ ¼ H1

0 ðOÞ: Whenever without confusion, we shall

use jj:jj for the norm in (3) with a relevant aoN�2
2

in place and a domain OCRN in

the context. The symbol jj:jjp will be used to denote LpðOÞ norm when O is clear in

the context.

Theorem 1. Let NX1; aoN�2
2
: Assume OCCBRð0Þ for some R40: Then there exists

C ¼ Cða;OÞ40 such that for all uAD1;2
a ðOÞ;

jxj�aruj jj j22�
N � 2� 2a

2

� �2

jxj�ðaþ1Þ
u

			 						 			2
2

XC ln
R

jxj

� ��1
jxj�aru

					
					

					
					
2

2

: ð11Þ

Moreover, when 0AO the inequality is sharp in the sense that ln R
jxj


 ��1
cannot be

replaced by gðxÞ ln R
jxj


 ��1
with g satisfying jgðxÞj-N as jxj-0:

In the case a ¼ 0; by using Hölder inequality, we see (11) implies Theorem B. Our
approach is quite different from that in [5,14], in some sense simpler and easier to be
adapted for the weighted versions. Following the idea used in [8], we convert the

problem from RN to one defined on a cylinder C ¼ R� SN�1: From there an
inequality similar to the classical one-dimensional Hardy inequality on ð0;NÞ is
used to tackle the technical part of the proof. We also note that while the sharpness

of Theorems A and B is open-ended (for qo 2N
N�2 and qo2; respectively), the

sharpness in Theorem 1 is close-ended in the sense ln R
jxj


 ��1
cannot be replaced by

ln R
jxj


 ��d

for do1:
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We take OCCBRð0Þ just to avoid the singularity of ln R
jxj


 ��1
at jxj ¼ R: Here we

are interested in the singularity at zero. In fact, if we take d40 such that Bdð0ÞCO;
then it holds for all uAD1;2

a ðOÞ;

jxj�aruj jj j2L2ðOÞ�
N � 2� 2a

2

� �2

jxj�ðaþ1Þ
u

			 						 			2
L2ðOÞ

XC jxj�aruj jj j2L2ðO\Bdð0ÞÞ;

for some C40 (see the second remark in Section 2).
Using similar ideas, we give another result of the same spirit, which works for

bounded domains as well as exterior domains. It also takes into account the

singularity of ln R
jxj at jxj ¼ R:

Theorem 2. Let NX1; apN�2
2
: Assume OCBRð0Þ or OCBC

Rð0Þ ¼ RN
\BRð0Þ: Then for

all uAD1;2
a ðOÞ;

jxj�aruj jj j22�
N � 2� 2a

2

� �2

jxj�ðaþ1Þ
u

			 						 			2
2

X
1

4
ln

R

jxj

� ��1
jxj�ðaþ1Þ

u

					
					

					
					
2

2

: ð12Þ

This inequality is sharp in the sense that ln R
jxj


 ��1
cannot be replaced by gðxÞ ln R

jxj


 ��1
with jgðxÞj-N as jxj-0 when 0AO (by gðxÞðln R

jxjÞ
�1

with jgðxÞj-N as jxj-N

when BC
r ð0ÞCO). The best constant 1

4
is then also sharp.

For a ¼ 0; this was proved recently in [1] (see also [6]) under condition
OCBe�1Rð0Þ and no estimate on the best constant is given there except for a ¼ 0;
N ¼ 2:
Next, we turn to Hardy–Sobolev type inequalities which correspond to apboa þ

1 in CKN inequality (1). Recall the norm on Lq
wðOÞ is defined by

jjujjq;w ¼ sup
S

R
S
juj dx

jSj
1
q0

;

where q0 is the conjugate exponent of q; i.e. 1
q
þ 1

q0 ¼ 1 and SCO has a finite measure.

Theorem 3. Let NX3; 0paoN�2
2
; apboa þ 1; p ¼ 2N

N�2þ2ðb�aÞ: Assume OCRN is

bounded. Then there exists C ¼ Cða; b;OÞ such that for all uAD1;2
a ðOÞ;
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jxj�aruj jj j22�Sða; bÞ jxj�b
u

			 						 			2
p
XC jxj�a

uj jj j2 N
N�2�a

;w
ð13Þ

and

jxj�aruj jj j22�Sða; bÞ jxj�b
u

			 						 			2
p
XC jxj�aruj jj j2 N

N�1�a
;w
: ð14Þ

Moreover, the weak norm on the right-hand side cannot be replaced by the strong norm.

For a ¼ b ¼ 0; (13) was proved by Brezis and Lieb [3] (see also [4], and also by
Bianchi and Egnell with a different proof [2]). For a ¼ 0; 0obo1; (13) was proved
by Radulescu et al. [12]. For a ¼ b ¼ 0; (14) was proved in [3].
Our approach to prove Theorem 3, though follows the idea in [12,13], but

improves theirs. Without using Schwarz symmetrization, our approach is easily
adapted for the weighted versions. Moreover, our method can be used to establish
results like (13) in unbounded domains. This partially addresses a question raised by
Brezis and Lieb [3].
In order to state our results for unbounded domains, let us define for a domain

OCRN ;

l1ðOÞ ¼ inf
D
1;2
0
ðOÞ

R
O jruj2R
O u2

:

We say O satisfies ðO0Þ condition if there exists an open cone with its vertex at 0; V0;

such that for some R40; OC*ðV0\BRð0ÞÞ: We say O satisfies ðO1Þ condition if there

exists an open cone at 0; V0; such that for some R40; for all yAO; OC*ðy þ
V0Þ\BRðyÞ:

Theorem 4. Let N ¼ 3; 4; OCRN satisfy ðO1Þ and l1ðOÞ40: Then there exists

C ¼ CðOÞ40 such that for all uAD
1;2
0 ðOÞ;

jjrujj22 � Sð0; 0Þjjujj22�XCjjujj2N
N�2;w

and

jjrujj22 � Sð0; 0Þjjujj22�XCjjrujj2N
N�1;w

:

Theorem 5. Let NX3; maxf0; N�4
2
gpaoN�2

2
; apboa þ 1; a þ ba0; p ¼ 2N

N�2þ2ðb�aÞ:

Assume OCRN satisfies l1ðOÞ40 and condition ðO0Þ: Then there exists C ¼
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Cða; b;OÞ such that for all uAD1;2
a ðOÞ;

jxj�aruj jj j22�Sða; bÞ jxj�b
u

			 						 			2
p
XC jxj�a

uj jj j2 N
N�2�a

;w

and

jxj�aruj jj j22�Sða; bÞ jxj�b
u

			 						 			2
p
XC jxj�aruj jj j2 N

N�1�a
;w
:

Typical domains that satisfy l1ðOÞ40 and ðO0Þ or ðO1Þ are strips or sub-domains
of strips. Here by strip we mean domains that are bounded in at least one direction.
We shall discuss more on this in Section 4.
Due to the translation invariance in Theorem 4, we need the stronger condi-

tion ðO1Þ:

2. Hardy inequalities with remainder terms

We prove Theorems 1 and 2 in this section. The idea is to use a conformal
transformation to convert the problem to an equivalent one defined in a domain on a

cyliner C ¼ R� SN�1: This idea has been used in [8] to study the symmetry property
of extremal functions for the Caffarelli–Kohn–Nirenberg inequalities (1). More

precisely, to a function uACN

0 ðO\f0gÞ we associate vACN

0 ð *OÞ by the transformation

uðxÞ ¼ jxj�
N�2�2a

2 v �ln jxj; x

jxj

� �
; ð15Þ

where *O is a domain on C defined by

ðt; yÞ ¼ �ln jxj; x

jxj

� �
A *O 3 xAO: ð16Þ

In [8], it was proved that when O ¼ RN ; the above transformation defines a Hilbert

space isomorphism between D1;2
a ðRNÞ and H1ðCÞ whose norm is given by jjvjj2H1ðCÞ ¼R

Cðjrvj2 þ ðN�2�2a
2

Þv2Þ dm:
Using the same computation, we have

Lemma 1. Let NX1; aoN�2
2
; OCRN a domain. Then under the transformation (15)

Z
O
jxj�2ajruj2 dx ¼

Z
*O
jrvj2 þ N � 2� 2a

2

� �2

v2

" #
dm
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and Z
O
jxj�2ðaþ1Þu2 dx ¼

Z
*O
jvj2 dm:

Let Cþ (C�; resp.) denote the domain on C with t component positive (negative,
resp.).

Lemma 2. Let NX1 and *OCCþ or *OCC� be a domain. Then for all vACN

0 ð *OÞ;Z
*O
jrvj2 dmX

1

4

Z
*O

v2

t2
dm: ð17Þ

Moreover 1
4

is the best constant if ½L;NÞ � SN�1C *O or ð�N;�L� � SN�1C *O for

L40:

Proof. This is a version of the classical Hardy inequality adapted for the cylinder

case. For vACN

0 ð *OÞ;

Z
N

0

v2ðt; yÞ
t2

dt ¼ �2
Z

N

0

vvt

t
dtp2

Z
N

0

v2

t2
dt

� �1
2
Z

N

0

v2t dt

� �1
2
:

Thus Z
N

0

v2ðt; yÞ
t2

dtp4

Z
N

0

v2t ðt; yÞ dt:

Integrating on SN�1 gives the result. Since 1
4
is the best constant for the classical one-

dimensional Hardy inequality (see [10]), the optimality is proved by considering
functions depending only on t: &

Lemma 2 implies that if *OCCþ or *OCC�; the completion of CN

0 ð *OÞ under the
norm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
*O jrvj2 dm

q
is well defined, even for N ¼ 1; and 2. We denote this space by

D
1;2
0 ð *OÞ:

Proof of Theorem 1. A simple scaling argument shows it suffices to take R ¼ 1: Let
g0 ¼ maxxAO jxj: Then g0o1: By Lemma 1, under transformation (15), it suffices to

show that there exists C40 such that for all vAD
1;2
0 ð *OÞ;

Z
*O
jrvj2 dmXC

Z
*O

1

t2
jryvj2 þ vt þ

N � 2� 2a

2
v

� �2
" #

dm:

ARTICLE IN PRESS
Z.-Q. Wang, M. Willem / Journal of Functional Analysis 203 (2003) 550–568556



But by Lemma 2Z
*O

1

t2
jryvj2 þ vt þ

N � 2� 2a

2
v

� �2
" #

dm

p2
1

ðln g0Þ2
Z
*O
jrvj2 dmþ 2

N � 2� 2a

2

� �2

4

Z
*O

v2t dm

p
2

ðln g0Þ2
þ 2ðN � 2� 2aÞ2

 !Z
*O
jrvj2 dm:

To show the sharpness part of the theorem, assume gðxÞ satisfies jgðxÞj-þN as
jxj-0: We may assume

lim
jxj-0

jgðxÞj
jln jxjj ¼ 0:

Now it suffices to construct vnAD
1;2
0 ð *OÞ such thatR

*O jrvnj2 dmR
*O
jgðe�tÞj2

t2
jryvnj2 þ

@vn

@t
þ N � 2� 2a

2
vn

� �2
 !

dm

-0; as n-N:

Let Rn-N; and Z be a function defined on ½0;NÞ such that ZðtÞ ¼ 1; 0ptp1;
ZðtÞ ¼ 0; tX2; jZ0ðtÞjp2: Define

vnðt; yÞ ¼ Z
jt � Rnj

Rn

� �
:

Then for n large, vnAD1;2
0 ð *OÞ since *O contains ½L;NÞ � SN�1 for some L large. Then,

An :¼
Z
*O
jrvnj2 dmpC

Z 6Rn

2Rn

1

R2
n

ðZ0Þ2 dtp
C

Rn

Bn :¼
Z
*O

jgðe�tÞj2

t2
jryvnj2 þ

@vn

@t
þ N � 2� 2a

2
vn

� �2
" #

dm

XC

Z 5Rn

3Rn

jgðe�tÞj2

t2
@vn

@t

� �2

þ N � 2� 2a

2

� �2

v2n þ ðN � 2� 2aÞvn
@vn

@t

 !
dt:

Then Z 6Rn

3Rn

jgðe�tÞj2

t2
@vn

@t

� �2

dt ¼ o
1

Rn

� �
; as n-N;
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and choosing 0obo1;Z 5Rn

3Rn

jgðe�tÞj2

t2
vn

@vn

@t
dt

					
					

p
Z 5Rn

3Rn

jgðe�tÞj2b

t2b
@vn

@t

� �2

dt þ
Z 5Rn

3Rn

jgðe�tÞj2ð2�bÞ

t2ð2�bÞ v2n dt

¼ o
1

Rn

� �
þ oð1Þ

Z 5Rn

3Rn

jgðe�tÞj2

t2
v2n dt:

Then

BnXC

Z 5Rn

3Rn

jgðe�tÞj2

t2
v2n dt � o

1

Rn

� �
XC inf

tX3Rn

jgðe�tÞj2
� �

	 1
Rn

� o
1

Rn

� �
:

Therefore,

An

Bn

p
CR�1

n

Cðinf tX3Rn
jgðe�tÞj2ÞR�1

n þ oð1ÞR�1
n

-0; n-N:

The proof of Theorem 1 is complete. &

Remark. From the proof, C ¼ Cða;OÞ can be taken as

2

ðln g0Þ2
þ 2ðN � 2� 2aÞ2

 !�1

:

Remark. If we take O\Bdð0Þ on the right-hand side for some d40; gO\Bdð0ÞO\Bdð0Þ is a
bounded domain in Cþ so the t-component has positive upper and lower bounds.
Thus we get for some C ¼ Cða;O; dÞ40;

jxj�aruj jj j2L2ðOÞ�
N � 2� 2a

2

� �2

jxj�ðaþ1Þ
u

			 						 			2
L2ðOÞ

XC jxj�aruj jj j2L2ðO\Bdð0ÞÞ:

Proof of Theorem 2. Again we may assume R ¼ 1: Let us assume aoN�2
2 first. It

suffices then to use Lemmas 1 and 2.

Since the constant on the right-hand side is 1
4
; which is independent of aoN�2

2
; we

may send a-N�2
2 in the inequality. This can be done first for smooth functions, i.e.

for all uACN

0 ðOÞ; with a ¼ N�2
2
; (12) is satisfied. This implies D1;2

a ðOÞ with a ¼ N�2
2

is

well defined and jxj�aruj jj j2 can be taken as its norm. Now a density argument

finishes the proof for the case a ¼ N�2
2
:
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For the sharpness of the weight, we use the same test functions vn as in the proof of
Theorem 1. Then it is easy to seeR

*O jrvnj2 dmR
*O
jgðe�tÞj2

t2
v2n dm

p
C

inf tXRn
jgðe�tÞj2

-0; as n-N:

Finally, the constant 1
4
on the right-hand side is the best constant by Lemma 2. &

3. Hardy–Sobolev inequalities with remainder terms

In this section we consider the weighted Hardy–Sobolev inequality (1) on

D1;2
a ðRNÞ;

jxj�aruj jj j22�Sða; bÞ jxj�b
u

			 						 			2
p
X0

for the parameter range: NX3; 0oaoN�2
2
; apboa þ 1; p ¼ 2N

N�2þ2ðb�aÞAð2; 2��;
where 2� ¼ 2N

N�2: Recall from introduction that the best constant Sða; bÞ is achieved
by the functions given in (5) and (6). Thus the minimizers for Sða; bÞ consist of a two-
dimensional manifold MCD1;2

a ðRNÞ: Let us define

dðu;MÞ ¼ inff jxj�arðu � CUlÞj jj j2: CAR; l40g:

We need the following result first which generalizes the results in [2,3] for the case
a ¼ 0 to the case a40:

Theorem 6. For NX3; 0oaoN�2
2
; apboa þ 1; p ¼ 2N

N�2þ2ðb�aÞ; there exists C ¼
CðN; a; bÞ such that for all uAD1;2

a ðRNÞ;

jxj�aruj jj j22�Sða; bÞ jxj�b
u

			 						 			2
p
XCdðu;MÞ2: ð18Þ

We first consider the eigenvalue problem

�divðjxj�2aruÞ ¼ ljxj�bp
Up�2u

uAD1;2
a ðRNÞ:

(
ð19Þ

Lemma 3. Let a40; apboa þ 1: The first two eigenvalues of (19) are given by

l1 ¼ Sða; bÞ and l2 ¼ ðp � 1ÞSða; bÞ: The eigenspaces are spanned by U and d
dljl¼1Ul;

respectively.
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Proof. It is easy to check that U and d
dljl¼1Ul are eigenfunctions corresponding

to Sða; bÞ and ðp � 1ÞSða; bÞ; respectively. Then it suffices to show that any
eigenfunction corresponding to an eigenvalue lpðp � 1ÞSða; bÞ has to be radial. Let
Ci; i ¼ 0; 1;y the sequence of spherical harmonics, which are eigenfunctions of the

Laplace–Beltrami operator on SN�1 : � DSN�1Ci ¼ siCi; s0 ¼ 0; s1 ¼ ? ¼ sN ¼
N � 1; sNþ14sN : Let u be an eigenfunction corresponding to an eigenvalue
lpðp � 1ÞSða; bÞ: We shall show for all iX1;

Z
SN�1

uðr; yÞCiðyÞ dy � 0:

Let ji ¼
R

SN�1 uðr; yÞCiðyÞ dy: Then we can check

divðjxj�2arjiÞ ¼ � 2ajxj�2a�1 @

@r
ji þ jxj�2aDrji

¼
Z

SN�1
jxj�2aDruðr; yÞ � 2ajxj�2a�1 @u

@r
ðr; yÞ

� �
CiðyÞ dy

¼
Z

SN�1
divðjxj�2aruÞ � jxj�2aDyu

r2

" #
CiðyÞ dy

¼
Z

SN�1
�ljxj�bp

Up�2uCiðyÞ dyþ r�2asi

r2

Z
SN�1

uCiðyÞ dy

¼ðr�2a�2si � lr�bpUp�2Þji:

Then for any R40;

0 ¼
Z

BRð0Þ
divðjxj�2arjiÞ

@U

@r
þ ðlr�bpUp�2 � r�2a�2siÞji

@U

@r

� �
dx:

The first term can be calculated as follows:

Z
BRð0Þ

divðjxj�2arjiÞUr dx

¼
Z

BRð0Þ
ji divðjxj

�2arðUrÞÞ dx �
Z
@BRð0Þ

jxj�2aji rðUrÞ;
x

R

D E
dm

þ
Z
@BRð0Þ

Ur jxj�2arji;
x

R

D E
dm

¼
Z

BRð0Þ
ji divðjxj

�2arðUrÞÞ dx þ
Z
@BRð0Þ

R�2a Ur

dji

dr
� Urrji

� �
dm:
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And using equation �divðjxj�2arUÞ ¼ Sða; bÞjxj�bp
Up�1; we haveZ

BRð0Þ
ji divðjxj

�2arðUrÞÞ dx

¼
Z

BRð0Þ
ji div jxj�2a

Urr
x

r


 �
dx

¼
Z

BRð0Þ
ji Nr�2a�1Urr þ jxj�2a

Urrr � ð2a þ 1Þr�2a�1Urr

h i
dx

¼
Z

BRð0Þ
ji ðN � 2a � 1Þr�2a�1Urr þ r�2a d

dr

2aUr

r
� N � 1

r
Ur

��
� Sða; bÞr�bpþ2aUp�1

��
dx

¼
Z

BRð0Þ
ji ðN � 2a � 1Þr�2a�1Urr þ r�2a 2a

rUrr � Ur

r2
� ðN � 1ÞðrUrr � UrÞ

r2

��
þ ðbp � 2aÞSða; bÞr�bpþ2a�1Up�1 � r�bpþ2aðp � 1ÞSða; bÞUp�2Ur

��
dx

¼
Z

BRð0Þ
jir

�2a N � 1� 2a

r2
Ur þ

Z
BRð0Þ

ðbp � 2aÞSða; bÞr�bp�1Up�1ji

� ðp � 1ÞSða; bÞ
Z

BRð0Þ
r�bpUp�2Urji:

Putting all these together, we get

0 ¼
Z
@BRð0Þ

R�2a Ur

dji

dr
� Urrji

� �
dmþ

Z
BRð0Þ

jir
�2a�2ðN � 1� si � 2aÞUr dx

þ
Z

BRð0Þ
ðbp � 2aÞSða; bÞr�bp�1Up�1ji dx

þ ðl� ðp � 1ÞSða; bÞÞ
Z

BRð0Þ
r�bpUp�2Urji dx:

Let R be the first zero of ji with R ¼ þN if ji is not zero anywhere. Without loss of

generality assume jiðrÞ40; rAð0;RÞ: Then dji

dr
ðRÞp0: Thus the first and the forth

terms are non-negative and the second and the third are positive unless ji � 0 since
bp � 2a40 for a40: The proof is finished. &

Lemma 4. For any sequence ðunÞCD1;2
a ðRNÞ\M such that infnjjjxj�arunjj2240 and

dðun;MÞ-0; it holds

lim
n-N

jxj�arunj jj j22�Sða; bÞ jxj�b
un

			 						 			2
p

dðun;MÞ X1� l2
l3
:
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Proof. First we assume dðun;MÞ ¼ jjjxj�arðun � UÞjj2: Since vn ¼ un � U is

orthogonal to the tangent space of M;

TUM ¼ span U ;
d

dl

				
l¼1

Ul

� �
;

we have by Lemma 3,

l3

Z
jxj�bp

Up�2v2n dxp jxj�arvnj jj j22¼ d2ðun;MÞ:

Let dn ¼ dðun;MÞ: Using the equation �divðjxj�2arUÞ ¼ Sða; bÞjxj�bp
Up�1; we getZ

jxj�bpjunjp dx ¼
Z

jxj�bp
Up dx þ p

Z
jxj�bp

Up�1vn dx

þ pðp � 1Þ
2

Z
jxj�bp

Up�2v2n dx þ oðd2
n Þ

¼ 1þ p

2

l2
Sða; bÞl3

d2
n þ oðd2

n Þ:

Then,

jjjxj�b
unjj2pp1þ l2

l3

d2
n

Sða; bÞ þ oðd2
n Þ:

By jjjxj�arunjj22 ¼ Sða; bÞ þ d2
n ; we have

jxj�arunj jj j22�Sða; bÞ jxj�b
un

			 						 			2
p
X 1� l2

l3

� �
d2

n þ oðd2
n Þ:

For the general case, dðun;MÞ ¼ jxj�arðun � CnUln
Þj jj j2 for some CnAR; ln40: We

can use the invariance of the inequality by dilations to reduce it to the special case
above. We omit it here. &

Proof of Theorem 6. If the theorem is false, we find ðunÞCD1;2
a ðRNÞ\M such that

jxj�arunj jj j22�Sða; bÞ jxj�b
un

			 						 			2
p

dðun;MÞ2
-0:

We may assume jjjxj�arunjj22 ¼ 1 and thus L ¼ limn-N dðun;MÞA½0; 1�: Then

jxj�b
un

			 						 			2
p
-Sða; bÞ�1:
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By a concentration-compactness argument [11,15] we can find ln40;

l
N�2�2a

2
n unðlnxÞ-VAM in D1;2

a ðRNÞ:

This implies L ¼ 0; a contradiction to Lemma 4. &

Proof of Theorem 3. Assume that (13) is not true. Then there exist ðunÞCH1
0 ðOÞ such

that

jxj�arunj jj j22�Sða; bÞ jxj�b
un

			 						 			2
p

jxj�a
unj jj j2 N

N�2�a
;w

-0:

We assume jjjxj�arunjj22 ¼ 1 and jjjxj�a
unjj2 N

N�2�a
;w

is bounded by Sobolev’s

inequality. Then jjjxj�a
unjj2p-Sða; bÞ�1: By Theorem 6, there exist ðCn; lnÞ-ð1;NÞ

such that

dðun;MÞ ¼ jxj�arðun � CnUln
Þj jj j2-0:

A direct computation shows

dðun;MÞ2XC2
n

Z
jxjX1

jxj�2ajrUln
j2 dx

¼ClN�2�2a
n

Z
N

1

r�2að1þ ðlnrÞ2Þ�2ðbþ1ÞðlnrÞ2ða�1Þl2nrN�1 dr

¼C

Z
N

ln

S�2að1þ SaÞ�2ðbþ1ÞS2ða�1ÞSN�1 dS

XCl2a�ðN�2Þ
n ;

where C40 is a constant independent of n:
Therefore,

jxj�a
unj jj j

L

N
N�2�a
w ðOÞ

p jxj�aðun � CnUln
Þj jj j

L

N
N�2�a
w ðOÞ

þ jxj�a
CnUln

j jj j
L

N
N�2�a
w ðOÞ
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pC jxj�aðun � CnUln
Þj jj j

L
2N

N�2ðOÞ
þ Cnjxj�a

Uln
j jj j

L

N
N�2�a
w ðRN Þ

pC jxj�aðun � CnUln
Þj jj j

L
2N

N�2ðRN Þ
þCnln jxj

2a�ðN�2Þ
2�a U

				 								 				 N
N�2�2a

;w

pCdðun;MÞ þ Cnl
2a�ðN�2Þ

2
n jxj�a

Uj jj j N
N�2�a

;w

pCdðun;MÞ:

This is a contradiction with Theorem 6.
Since, by a direct computation

jxj�a
CnrUln

j jj j N
N�1�a

;w
¼ Cnl

2a�ðN�2Þ
2

n jxj�arUj jj j N
N�1�a

;w
;

we obtain (14) by a similar argument. &

4. Hardy–Sobolev inequalities with remainder terms on unbounded domains

This section is devoted to proving Theorems 4 and 5. We need a few preliminary
results.
When a ¼ b ¼ 0; the manifold of minimizers for Sð0; 0Þ is a N þ 2 dimensional,

given by

Mð0; 0Þ ¼ fCUlð:þ yÞ j CAR; l40; yARNg

U is given in (6) with a ¼ b ¼ 0:

Lemma 5. Let NX3; a ¼ b ¼ 0: Assume O satisfies condition ðO1Þ: Then there exists

C ¼ CðOÞ40; such that as l-N;

inf
yAO

jjrUlðx þ yÞjj2L2ðOCÞXCl2�N :

Proof. Just note that jrUlðx þ yÞj is radial in jx þ yj and there exists C40 such that
as l-N;

jjrUlðxÞjj2L2ðBC
R
ð0ÞÞXCl2�N : &

Similarly, we have
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Lemma 6. Let NX3; 0paoN�2
2 ; apboa þ 1; a þ ba0: Assume O satisfies condition

ðO0Þ: Then there exists C ¼ CðOÞ40 such that for UlAMða; bÞ as l-N;

jxj�arUlj jj j2L2ðOCÞXCl2aþ2�N :

Lemma 7. Let NX3; 0paoN�2
2 ; apboa þ 1: Let OCRN and

P : D1;2
a ðRNÞ-D1;2

a ðOÞ be the projection operator. Then for any UAMða; bÞ;
0pPUpU in RN :

Proof. PU is given by PU ¼ U � v where v is the solution of

�divðjxj�2arvÞ ¼ 0 in O;

v ¼ U on @O:

(

Then PU satisfies

�divðjxj�2arðPUÞÞ ¼ Sða; bÞjxj�bp
Up�1 in O;

PU ¼ 0 on @O:

(

Then PðUÞX0 in O for otherwise, assume PðUÞo0 in O�CO: Multiplying the
equation by PU and integrating on O�; we getZ

O�

jxj�2ajrðPUÞj2 ¼ Sða; bÞ
Z
O�

jxj�bp
Up�1PðUÞp0;

which says PU � constant in O�: Then PU � 0 in O� a contradiction.
Also v satisfies vX0 in O: Then PUpU : &

Lemma 8. Let l1ðOÞ40: Then (C40; for all uAD1;2
a ðOÞ;

jxj�a
uj jj jL2ðOÞpC jxj�aruj jj jL2ðOÞ:

Proof. Since D1;2
a ðOÞ ¼ CN

0 ðO\f0gÞjj jja ; we need only consider uACN

0 ðO\f0gÞ: Then
jxj�a

uACN

0 ðO\f0gÞ: But for all vACN

0 ðO\f0gÞ;

Z
O

v2pl1

Z
O
jrvj2:
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Therefore, using Hardy inequality,Z
O
jxj�2a

u2p l1

Z
O
jrðjxj�a

uÞj2

¼ 2l1

Z
O

a2jxj�2ðaþ1Þu2 þ jxj�2ajruj2

pC

Z
O
jxj�2ajruj2: &

Proof of Theorem 4. Assume that Theorem 4 is not true. Then there exist

ðunÞCD1;2
0 ðOÞ such that

jjrunjj22 � Sð0; 0Þjjunjj22�
jjunjj2N

N�2;w

-0; n-N:

We assume jjrunjj2 ¼ 1: If N ¼ 4; we have, by assumption,

jjunjj N
N�2;w

pjjunjj N
N�2

pCjjrunjj2 ¼ C:

If N ¼ 3; by Hölder inequality and Sobolev inequality, we have

jjunjj N
N�2;w

pjjunjj N
N�2

p jjunjjl2jjunjj1�l
2�

pCjjrunjj2 ¼ C:

Then jjunjj22�-S�1ð0; 0Þ: By the proof of Lemma 1 in [2], there exists

ðCn; lnÞ-ð1;NÞ and ðynÞCO such that

dðun;MÞ ¼ jjrðun � UnÞjjL2ðRN Þ-0; n-N;

where Un ¼ CnUðlnð:� ynÞÞ: By Lemma 5,

dðun;MÞ2X
Z
OC

jrUnj2 dxXC C2
nl

2�N :

Using P : D1;2
0 ðRNÞ-D1;2

0 ðOÞ as the projection operator, we have

jjunjj N
N�2;w

p jjun � PUnjj N
N�2

þ jjPUnjj N
N�2;w

pCjjrðun � PUnÞjjL2ðOÞ þ jjPUnjj N
N�2;w

pCjjrðun � UnÞjjL2ðRN Þ þ jjPUnjj N
N�2;w

:
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It follows from Lemma 7 that

jjPUnjj N
N�2;w

pjjUnjj
L

N
N�2
w ðRN Þ

pCnl
2�N
2

n jjU jj
L

N
N�2
w ðRN Þ

:

Hence

jjunjj N
N�2;w

pCdðun;MÞ:

This is a contradiction with the Theorem in [2]. The proof of the second part of
Theorem 4 is similar. &

Proof of Theorem 5. Assume that Theorem 5 is not true. Then there exist

ðunÞCD1;2
a ðOÞ such that

jxj�arunj jj j22�Sða; bÞ jxj�b
un

			 						 			2
p

jxj�a
unj jj j2 N

N�2�a
;w

-0; n-N:

We assume jxj�arunj jj j2¼ 1: Using (1) and Lemma 8, we obtain

jxj�a
unj jj j N

N�2�2a
;w
p jxj�a

unj jj j N
N�2�2a

p jxj�a
unj jj jl2 jxj�a

unj jj j1�l
2�

pC jxj�arunj jj j22¼ C:

Then jxj�b
un

			 						 			2
p
-S�1ða; bÞ: By Theorem 6, there exists ðCn; lnÞ-ð1;NÞ such that

dðun;MÞ ¼ jxj�arðun � CnUln
Þj jj jL2ðRN Þ-0; n-N:

By Lemma 6,

dðun;MÞ2XC2
n

Z
OC

jxj�ajrUln
j2 dxXC C2

nl
2aþ2�N
n :

As in the proof of the preceding theorem, we obtain a contradiction with
Theorem 6. &

Remark. It is easy to verify that unions of a finite number of strips satisfy conditions
l1ðOÞ40 and ðO1Þ:
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