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Introductory physics lab instruction is undergoing a transformation, with increasing emphasis on
developing experimentation and critical thinking skills. These changes present a need for standardized
assessment instruments to determine the degree to which students develop these skills through instructional
labs. In this article, we present the development and validation of the physics lab inventory of critical
thinking (PLIC). We define critical thinking as the ability to use data and evidence to decide what to
trust and what to do. The PLIC is a 10-question, closed-response assessment that probes student critical
thinking skills in the context of physics experimentation. Using interviews and data from 5584 students
at 29 institutions, we demonstrate, through qualitative and quantitative means, the validity and reliability
of the instrument at measuring student critical thinking skills. This establishes a valuable new assessment
instrument for instructional labs.
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I. INTRODUCTION

More than 400 000 undergraduate students enroll in
introductory physics courses at post-secondary institutions
in the United States each year [1]. In most introductory
physics courses, students spend time learning in lectures,
recitations, and instructional laboratories (labs). Labs are
notably the most resource intensive of these course com-
ponents, as they require specialized equipment, space,
facilities, and occupy a significant amount of student
and instructional staff time [2,3].
In many institutions, labs are traditionally intended to

reinforce and supplement learning of scientific topics
and concepts introduced in lecture [2,4–7]. Previous work,
however, has called into question the benefit of hands-on
lab work to verify concepts seen in lecture [2,6–10].
Traditional labs have also been found to deteriorate
students’ attitudes and beliefs about experimental physics,
while labs that aimed to teach skills were found to improve
students’ attitudes [10].
Recently, there have been calls to shift the goals of

laboratory instruction towards experimentation skills
and practices [11–13]. This shift in instructional targets

provides renewed impetus to develop and evaluate instruc-
tional strategies for labs. While much discipline-based
education research has evaluated student learning from
lectures and tutorials, there is far less research on learning
from instructional labs [2,4–6,14,15]. There exist many
open research questions regarding what students are cur-
rently learning from lab courses, what students could be
learning, and how to measure that learning.
The need for large-scale reform in lab courses goes hand

in hand with the need for validated and efficient evaluation
techniques. Just as previous efforts to reform physics
instruction have been unified around shared assessments
[16–19], larger scale change in lab instruction will require
common assessment instruments to evaluate that change
[4–6,15]. Currently, few research-based and validated
assessment instruments exist for labs. The website
PhysPort.org [20], an online resource to support physics
instructors with research-based teaching resources, has
amassed 92 research-based assessment instruments for
physics courses as of this publication. Only four are
classified as evaluating lab skills, all of which focus on
data analysis and uncertainty [21–24].
To address this need, we have developed the physics lab

inventory of critical thinking (PLIC), an instrument to
assess students’ critical thinking skills when conducting
experiments in physics. The intent was to provide an
efficient, standardized way for instructors at a range of
institutions to assess their instructional labs in terms of the
degree to which they develop students’ critical thinking
skills. Critical thinking is defined here as the ways in which
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one uses data and evidence to make decisions about what to
trust and what to do. In a scientific context, this decision
making involves interpreting data, drawing accurate con-
clusions from data, comparing and evaluating models and
data, evaluating methods, and deciding how to proceed in
an investigation. These skills and behaviors are commonly
used by experimental physicists [25], but are also relevant
to students regardless of their future career paths, academic
or otherwise [12]. Being able to make sense of data,
evaluate whether they are reliable, compare them to
models, and decide what to do with them is important
whether thinking about introductory physics experiments,
interpreting scientific reports in the media, or making
public policy decisions. This fact is particularly relevant
given that only about 2% of students taking introductory
physics courses at U.S. institutions will graduate with a
physics degree [1,26].
In this article, we outline the theoretical arguments for

the structure of the PLIC, as well as the evidence of validity
and reliability through qualitative and quantitative means.

II. ASSESSMENT FRAMEWORK

In what follows, we use arguments from previous
literature to motivate the structure and format of the
PLIC. We also compare the goals of the PLIC to existing
instruments.

A. Design concepts

As discussed above, the goals of the PLIC are to measure
critical thinking to fill existing needs and gaps in the
existing literature on lab courses [25,27–29] and reports on
undergraduate science, technology, engineering, and math
(STEM) instruction [13–15]. Probing the what to trust
component of critical thinking involves testing students’
interpretation and evaluation of experimental methods,
data, and conclusions. Probing the what to do component
involves testing what students think should be done next
with the information provided.
Critical thinking is considered content dependent:

“Thought processes are intertwined with what is being
thought about” [[30], p. 22]. This suggests that the assess-
ment questions should be embedded in a domain-specific
context, rather than be generic or outside of physics. The
content associated with that context, however, should be
accessible to students with as minimal physics content
knowledge as possible to ensure that the instrument is
assessing critical thinking rather than students’ content
knowledge. We chose to use a single familiar context to
optimize the use of students’ assessment time.
We chose to have students evaluate someone else’s data

rather than conduct their own experiment (as in a practical
lab exam) for several reasons related to the purposes of
standardized assessment. First, collecting data requires
either common equipment (which creates logistical

constraints and would inevitably reduce its accessibility
across institutions) or an interactive simulation, which
would create additional design challenges. Namely, it is
unclear whether a simulation could sufficiently represent
authentic measurement variability and limitations of physi-
cal models, which are important for evaluating the what to
trust aspect of critical thinking. Second, by evaluating
another person’s work, students are less likely to engage in
performance goals [31–33], defined as situations “in which
individuals seek to gain favorable judgments of their
competence or avoid negative judgments of their compe-
tence” [[32], p. 1040], potentially limiting the degree to
which they would be critical in their thinking. Third, it
constrains what they are thinking critically about, allowing
us to precisely evaluate a limited and well-defined set of
skills and behaviors. By interweaving test questions with
descriptions of methods and data, the assessment scaffolds
the critical thinking process for the students, again narrow-
ing the focus to target particular skills and behaviors with
each question. Fourth, by designing hypothetical results
that target specific experimental issues, the assessment can
look beyond students’ declarative knowledge of laboratory
skills to study their enacted critical thinking.
The final considerations were that the instrument be

closed response and freely available, to meet the goal of
providing a practically efficient assessment instrument.
The need for a closed-response assessment facilitates
automated scoring of student work, making it more likely
to be used by instructors. A freely available instrument
facilitates its use at a wide range of institutions and for a
variety of purposes.

B. Existing instruments

A number of existing instruments assess skills or
concepts related to learning in labs, but none sufficiently
meet the design concepts outlined in the previous section
(see Table I).
The specific skills to be assessed by the PLIC are not

covered in any single existing instrument (Table I, col-
umns 1–4). Several of these instruments are also not physics
specific (Table I, column 6). Given that critical thinking is
considered content dependent [30] and assessment questions
should be embedded in a domain-specific context, these
instruments do not appropriately assess learning in physics
labs. The physics measurement questionnaire (PMQ),
Lawson test of scientific reasoning, and critical thinking
assessment (CAT) use an open-response format (Table I,
column 5). This places significant constraints on the use of
these assessments in large introductory classes, the target
audience of the PLIC. A closed-response version of the
PMQ was created [44], but limited tests of validity or
reliability were conducted on the instrument. The Critical
Thinking Assessment Test (CAT) and the California
Critical Thinking Skills Test are also not freely available
to instructors (Table I, column 7). The cost associated with
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using these instruments places significant logistical burden
on dissemination and broad use, failing our goal to support
instructors at a wide range of institutions.
The measurement uncertainty quiz (MUQ) is the closest

of these instruments to meeting the PLIC in assessment
goals and structure, but the scope of the concepts covered
narrowly focuses on issues of uncertainty. For example,
respondents taking the MUQ are asked to propose next
steps to specifically reduce the uncertainty. The PLIC
allows respondents to propose next steps more generally,
such as to consider extending the range of the investigation
or testing additional variables.

C. PLIC content and format

The PLIC provides respondents with two case studies of
groups completing an experiment to test the relationship
between the period of oscillation T of a mass hanging from
a spring given by

T ¼ 2π

ffiffiffiffi
m
k

r

; ð1Þ

and the variables on which it depends: the spring constant k
and the mass m. The model makes a number of assump-
tions, such as that the mass of the spring is negligible,
though these are not made explicit to the respondents.
The mass on a spring content is commonly seen in high

school and introductory physics courses, making it rela-
tively accessible to a wide range of respondents. All
required information to describe the physics of the prob-
lem, including relevant equations, are given at the begin-
ning of the assessment. Additional content knowledge
related to simple harmonic motion is not necessary for
answering the questions. This claim was confirmed through
interviews with students (described in Secs. III and IV B).

This mass on a spring scenario is also rich in critical
thinking opportunities, which we had previously observed
during real lab situations [45].
Respondents are presented with the experimental meth-

ods and data from two hypothetical groups:
(1) The first hypothetical group uses a simple exper-

imental design that involves taking multiple repeated
measurements of the period of oscillation of two
different masses. The group then calculates the
means and standard uncertainties in the mean
(standard errors) for the two data sets, from which
they calculate the values of the spring constant k
for the two different masses.

(2) The second hypothetical group takes two measure-
ments of the period of oscillation at many different
masses (rather than repeated measurements at the
same mass). The analysis is done graphically to
evaluate the trend of the data and compare it to the
predicted model. That is, plotting T2 vs m should
produce a straight line through the origin. The
data, however, show a mismatch between the theo-
retical prediction and the experimental results. The
second group subsequently adds an intercept to the
model, which improves the quality of the fit, raising
questions about the idealized assumptions in the
given model.

PLIC questions are presented on four pages: one page for
group 1, two pages for group 2 (one with the one-parameter
fit, and the other adding the variable intercept to their fit),
and one page comparing the two groups. There are a
combination of question formats, including five-point
Likert-scale questions, traditional multiple choice questions,
and multiple response questions. Examples of the different
question formats are presented in Table II. The multiple
choice questions each contain three response choices from
which respondents can select one. The multiple response

TABLE I. Summary of the target skills and assessment structure of existing instruments for evaluating lab instruction.

Skills or concepts assessed Structure or features

Assessment
Evaluating

data
Evaluating
methods

Evaluating
conclusions

Proposing
next steps

Closed
response

Physics
specific

Freely
available

Lawson test of scientific reasoning [34] X X X
Critical thinking assessment test (CAT) [35,36] X X
California critical thinking skills test [37] X X
Test of scientific literacy skills (TOSLS) [38] X X X X X
Experimental design ability test (EDAT) [39] X X X
Biological experimental design concept
inventory (BEDCI) [40]

X X X

Concise data processing assessment
(CDPA) [21]

X X X X

Data handling diagnostic (DHD) [41] X X X X
Physics measurement questionnaire (PMQ) [42] X X X X
Measurement uncertainty quiz (MUQ) [43] X X X X X X
Physics lab inventory of critical thinking (PLIC) X X X X X X X

QUANTIFYING CRITICAL THINKING: … PHYS. REV. PHYS. EDUC. RES. 15, 010135 (2019)

010135-3



questions each contain 7–18 response choices and allow
respondents to select up to three. The decision to use this
format is discussed further in the next section. An example
multiple choice and multiple response question from the
fourth page of the PLIC is shown in Appendix B, Fig. 5 and
the entire assessment can be found at Ref. [20].

III. EARLY EVALUATIONS OF
CONSTRUCT VALIDITY

An open-response version of the PLIC was iteratively
developed using interviews with students and written
responses from several hundred students, all enrolled in
physics courses at universities and community colleges.
These responses were used to evaluate the construct
validity of the assessment, defined as how well the assess-
ment measures critical thinking, as defined above.
Six preliminary think-aloud interviews were conducted

with students in introductory and upper-division physics
courses, with the aim to evaluate the appropriateness of the
mass-on-a-spring context. In all interviews, students dem-
onstrated familiarity with the experimental context and
successfully progressed through all the questions. The
nature of the questions, such that each is related to but
independent of the others, allowed students to engage with
subsequent questions even if they struggled with earlier
ones; a student is able to answer and receive full credit
for later questions whether or not they provided the correct
response to earlier questions. All students expressed
familiarity with the equipment, physical models, and
methods but did not have explicit experience with evalu-
ating the limitations of the model. The interviews also
indicated that students were able to progress through the
questions and think critically about the data and model
without taking their own data.
The interviews revealed a number of ways to improve

the instrument by refining wording and the hypothetical
scenarios. For example, in an early draft, the survey
included only the second hypothetical group who fit their
data to a line to evaluate the model. Interviewees were
asked what they thought it meant to “evaluate a model.”
Some responded that to evaluate a model one needed to
identify where the model breaks down, while others

described obtaining values for particular parameters in
the model (in this case, the spring constant). The latter
is a common goal of experiments in introductory physics
labs [25]. In response to these variable definitions, the first
hypothetical group was added to the survey to better
capture students’ perspectives of what it meant to evaluate
a model (i.e., to find a parameter). This revision also offered
the opportunity to explore respondents’ thinking about
comparing pairs of measurements with uncertainty.
The draft open-response instrument was administered

to students at multiple institutions described in Table III
in four separate rounds. After each round of open-
response analysis, the survey context, and questions,
underwent extensive revision. The surveys analyzed in
rounds 1 and 2 provided evidence of the instrument’s

TABLE II. Question formats used on the PLIC along with the types and examples of questions for each format.

Format Types Examples

Likert Evaluate data How similar or different do you think group 1’s spring constant (k) values are?
Evaluate methods How well do you think group 1’s method tested the model?

Multiple choice Compare fits Which fit do you think group 2 should use?
Compare groups Which group do you think did a better job of testing the model?

Multiple response Reasoning What features were most important in comparing the fit to the data?
What to do next What do you think group 2 should do next?

TABLE III. Summary of the number of open-response PLIC
surveys that were analyzed for early construct validity tests and to
develop the closed-response format. The level of the class (first-
year or beyond-first-year) and the point in the semester when the
survey was administered are indicated.

Round

Institution
Class
level Survey 1 2 3 4

Stanford University FY
Pre 31 � � � � � � � � �
Post � � � 30 � � � � � �

University of Maine
FY

Pre � � � � � � � � � 170
Mid � � � � � � 120 93
Post � � � � � � � � � 189

BFY
Pre 25 � � � � � � 1
Post � � � � � � � � � 3

Foothill College
FY

Pre � � � 19 40 � � �
Post � � � 19 78 � � �

University of
British Columbia

FY
Pre 10 � � � � � � 107
Post � � � � � � � � � 38

University of
Connecticut

FY
Pre � � � � � � � � � 22
Post � � � � � � � � � 3

Cornell University
FY

Pre � � � � � � � � � 89
Post � � � � � � � � � 99

BFY
Pre � � � � � � � � � 35
Post � � � � � � � � � 29

St. Mary’s College
of Maryland

FY
Pre � � � � � � � � � 2
Post � � � � � � � � � 3

WALSH, QUINN, WIEMAN, and HOLMES PHYS. REV. PHYS. EDUC. RES. 15, 010135 (2019)

010135-4



ability to discriminate between students’ critical thinking
levels. For example, in cases where the survey was admin-
istered as a post-test, only 36% of the students attributed the
disagreement between the data and the predicted model to
a limitation of the model. Most students were unable to
identify limitations of the model even after instruction.
This provided early evidence of the instrument’s dynamic
range in discriminating between students’ critical thinking
levels. The different analyses conducted in rounds 1 and 2
will be clarified in the next section.
Students’ written responses also revealed significant

conceptual difficulties about measurement uncertainty,
consistent with other work [46–48]. The first question
on the draft instrument asked students to list the possible
sources of uncertainty in the measurements of the period of
oscillation. Students provided a wide range of sources of
uncertainty, systematic errors (or systematic effects), and
measurement mistakes (or literal errors) in response to that
prompt [49]. It was clear that these questions were probing
different reasoning than the instrument intended to mea-
sure, and so were ultimately removed.
The written responses also exposed issues with the data

used by the two groups. For example, the second group
originally measured the time for 50 periods for each mass
and attached a timing uncertainty of 0.1 sec for each
measured time (therefore 0.02 sec per period). Several
respondents thought this uncertainty was unrealistically
small. Others said that no student would ever measure the
time for 50 periods. In the revised version, both groups
measure the time for five periods.
The survey was also distributed to 78 experts (faculty,

research scientists, instructors, and post-docs) for responses
and feedback, leading to additional changes and the
development of a scoring scheme (Sec. IV C). Experts
completing the first version of the survey frequently
responded in ways that were consistent with how they
would expect their students to complete the experiment,
which some described in open-response text boxes
throughout the survey. We intended for experts to answer
the survey by evaluating the hypothetical groups using the
same standards that they would apply to themselves or their
peers, rather than to students in introductory labs. To make
this intention clearer, we changed the survey’s language to
present respondents with two case studies of hypothetical
“groups of physicists” rather than “groups of students.”

IV. DEVELOPMENT OF CLOSED-RESPONSE
FORMAT

To develop and evaluate the closed-response version of
the PLIC, we coded the written responses from the open-
response instrument, conducted structured interviews, and
used responses from experts to generate a scoring scheme.
We also developed an automated system to communicate
with instructors and collect responses from students,
facilitating ease of use and extensive data collection.

A. Generation of the closed response version

In the first round of analysis, common student responses
from the open-response versions were identified through
emergent coding of responses collected from the courses
listed in Table III, round 1 (n ¼ 66 test responses). The
surveys analyzed in round 1 only include those given before
instruction. In the second round, a new set of responses were
coded based on this original list of response choices, and any
ideas that fell outside of the list were noted. If new ideas
came up several times, they were included in the list of
response choices for subsequent survey coding. Combined,
open response surveys from 134 students across four
institutions were used to generate the initial closed-response
response choices (Table III, rounds 1 and 2). The majority of
the open responses coded in round 2 were captured by the
response choices created in round 1, with only one response
per student, on average, being coded as other. Half of the
other responses were uninterpretable or unclear (for exam-
ple, “collect more data” with no indication of whether more
data meant additional repeated trials, additional mass values,
or additional oscillations per measurement). A third round
of open-response surveys were coded (Table III, round 3)
to evaluate whether any of the newly generated response
choices should be dropped (because they were not generated
by enough students overall), whether response choices could
be reworded to better reflect student thinking, or if therewere
any common response choices missing. Researchers regu-
larly checked answers coded as other to ensure no common
responses were missing, which led to the inclusion of several
new response choices.
While it was relatively straightforward to categorize

students’ ideas into closed-response choices, students
typically listed multiple ideas in response to each question.
A multiple response format was employed to address this
issue. Response choices are listed in neutral contexts to
address the issue of different respondents preferring pos-
itive or negative terms (e.g., the number of masses, rather
than many masses and few masses).
The closed-response questions, format, and wording were

revised iteratively in response to more student interviews and
collection of responses from the preliminary closed-response
version, which was administered online to the institutions
listed in Table III, round 4. To ensure reliability across
student populations, subsets of these students were randomly
assigned an open-response survey. Additional coding of
these surveys were checked against the existing closed-
response choices to again identify additional response
choices that could be included and to compare student
responses between open- and closed-response surveys. The
number of open-response surveys analyzed from these
institutions is summarized in Table III, round 4.

B. Interview analysis

Two sets of interviews were conducted and audio
recorded to evaluate the closed-response version of the

QUANTIFYING CRITICAL THINKING: … PHYS. REV. PHYS. EDUC. RES. 15, 010135 (2019)

010135-5



PLIC. A demographic breakdown of students interviewed
is presented in Table IV.
In the first set of interviews, participants completed

the closed-response version of the PLIC in a think-aloud
format. One goal of the interviews was to ensure that the
instrument was measuring critical thinking without testing
physics content knowledge, using a broader pool of
participants. All participants were able to complete the
assessment, including nonphysics majors, and there was
no indication that physics content knowledge limited or
enhanced their performance. The interviews identified
some instances where wording was unclear, such as state-
ments about residual plots.
A secondary goal was to identify the types of reasoning

participants employed while completing the assessment
(whether critical thinking or other). We observed three
distinct reasoning patterns that participants adopted while
completing the PLIC [50]: (i) selecting all (or almost all)
possible choices presented to them, (ii) cueing to keywords,
and (iii) carefully considering and discerning among the
response choices. The third pattern presented the strongest
evidence of critical thinking. To reduce the select all
behavior, respondents are now limited to selecting no more
than three response choices per question.
In the second set of interviews, participants completed

the open-response version of the PLIC in a think-aloud
format, and then were given the closed-response version.
The primary goal was to assess the degree to which the
closed-response options cued students’ thinking. For each
of the four pages of the PLIC, participants were given the
descriptive information and Likert and multiple choice
questions on the computer, and were asked to explain their
reasoning out loud, as in the open-response version.
Participants were then given the closed-response version
of that page before moving on to the next page in the same
fashion.

When completing the closed-response version, all par-
ticipants selected the answer(s) that they had previously
generated. Eight of the nine participants also carefully read
through the other choices presented to them and selected
additional responses they had not initially generated.
Participants typically generated one response on their
own and then selected one or two additional choices.
This behavior was representative of the discerning behavior
observed in the first round of interviews and provided
evidence that limiting respondents to selecting no more
than three response choices prompts respondents to be
discerning in their choices. No participant generated a
response that was not in the closed-response version,
or expressed a desire to select a response that was not
presented to them.
While taking the open-response version, two of the nine

participants were hesitant to generate answers aloud to the
question “What do you think group 2 should do next?”,
however, no participant hesitated to answer the closed-
response version of the questions. Another participant
expressed how hard they thought it was to select no more
than three response choices in the closed-response version
because “these are all good choices,” and so needed to
carefully choose response choices to prioritize. It is
possible that the combination of open-response questions
followed by their closed-response partners could prompt
students to engage in more critical thinking than either set
of questions alone. Future work will evaluate this possibil-
ity. The time associated with the paired set of questions,
however, would likely make the assessment too long to
meet our goal for an efficient assessment instrument.

C. Development of a scoring scheme

The scoring scheme was developed through evaluations
of 78 responses to the PLIC from expert physicists (faculty,
research scientists, instructors, and post-docs). As dis-
cussed in Sec. II C, the PLIC uses a combination of
Likert questions, traditional multiple choice questions,
and multiple response questions. This complex format
meant that developing a scoring scheme for the PLIC
was nontrivial.

1. Likert and multiple choice questions

The Likert and multiple choice questions are not
scored. Instead, the assessment focuses on students’
reasoning behind their answers to the Likert and multiple
choice questions. For example, whether a student thinks
group 1’s method effectively evaluated the model is less
indicative of critical thinking than why they think it was
effective.
The Likert and multiple choice questions are included

in the PLIC to guide respondents in their thinking on the
reasoning and what to do next questions. Respondents
must answer (either implicitly or explicitly) the question
of how well a group tested the model before providing

TABLE IV. Demographic breakdown of students interviewed
to probe the validity of the closed-response PLIC.

Category Breakdown Set 1 Set 2

Major Physics or related field 8 3
Other STEM 4 6

Academic level Freshman 6 3
Sophomore 3 2
Junior 1 3
Senior 0 1
Graduate student 2 0

Gender Women 6 5
Men 6 4

Race or ethnicity African American 2 1
Asian or Asian American 3 3
White or Caucasian 5 4
Other 2 1
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their reasoning. The PLIC makes these decision proc-
esses explicit through the Likert and multiple choice
questions.

2. Multiple response

There were several criteria for determining the scoring
scheme for the PLIC. First and foremost, the scoring
scheme should align with how experts answer. Expert
responses indicated that there was no single correct answer
for any of the questions. As indicated in the previous
sections, all response choices were generated by students in
the open-response versions, and so many of the responses
are reasonable choices. For example, when seeing data that
are in tension with a given model, it is reasonable to check
the assumptions of the model, test other possible variables,
or collect more data. An all-or-nothing scoring scheme,
where respondents receive full credit for selecting all of the
correct responses and none of the incorrect responses [51],
was therefore inappropriate. There needed to be multiple
ways to obtain full points for each question, in line with
how experts responded.
We assign values to each response choice equal to the

fraction of experts who selected the response (rounded
to the nearest tenth). As an example, the first reasoning
question on the PLIC asks respondents to identify what
features were important for comparing the spring con-
stants k from the two masses tested by group 1. About
97% of experts identified “the difference between the
k values compared to the uncertainty” (R1) as being
important. Therefore, we assign a value of 1 for this
response choice. About 32% identified “the size of the
uncertainty” (R2) as being important, and so we assign a
value of 0.3 for this response choice. All other response
choices received support from less than 12% of experts
and so are assigned values of 0 or 0.1, as appropriate.
These values are valid in so far as the fraction of experts
selecting a particular response choice can be interpreted
as the relative correctness of the response choice. These
values will continue to be evaluated as additional expert
responses are collected.
Another criteria was to account for the fact that respon-

dents may choose as many as zero to three response choices
per question. Accordingly, we sum the total value of
responses selected and divide by the maximum value of
the number of responses selected:

Score ¼
P

i
n¼1 Vn

Vmaxi

; ð2Þ

where Vn is the value of the nth response choice selected
and Vmaxi is the maximum attainable score when i
response choices are selected. Explicitly, the values of
Vmaxi are

Vmax1 ¼ Highest value;

Vmax2 ¼ ðHighest valueÞ þ ðSecond highest valueÞ;
Vmax3 ¼ ðHighest valueÞ þ ðSecond highest valueÞ

þ ðThird highest valueÞ: ð3Þ

If a respondent selects N responses, then they will obtain
full credit if they select the N highest valued responses.
In the example above, a respondent selecting one response
must select R1 in order to receive full credit. A respondent
selecting two responses must select both R1 and R2 to
receive full credit. A respondent selecting three responses
must select R1 and R2, as well as the third highest valued
response to receive full credit.
The scoring scheme rewards picking highly valued

responses more than it penalizes for picking low-valued
responses. For example, respondents selecting R1, R2, and
a third response choice with value zero will receive a score
of 0.93 on this question. The scoring scheme does not
necessarily penalize for selecting more or fewer responses.
For example, a respondent who picks the three highest-
valued responses will receive the same score as a respond-
ent who picks only the two highest-valued responses.
This is true even if the third highest-valued response
may be considered a poor response (with few experts
selecting it). Fortunately, most questions on the PLIC have
a viable third response choice.
The respondent’s overall score on the PLIC is obtained

by summing scores on each of the multiple response
questions. Thus, the maximum attainable score on the
PLIC is 10 points. Using this scheme, the 78 experts
obtained an average overall score of 7.6� 0.2. The dis-
tribution of these scores is shown in Fig. 3 in comparison to
student scores (discussed in Sec. VG). Here and through-
out, uncertainties in our results are given by the 95% con-
fidence interval (i.e., 1.96 multiplied by the standard error
of the quantity).

D. Automated administration

The PLIC is administered online via Qualtrics as part of
an automated system adapted from Ref. [52]. Instructors
complete a course information survey (CIS) through a web
link (available at Ref. [53]) and are subsequently sent a
unique link to the PLIC for their course. The system
handles reminder emails, updates, and the activation and
deactivation of pre- and postsurveys using information
provided by the instructor in the CIS. Instructors are also
able to update the activation and deactivation dates of one
or both of the pre- and post-surveys via another link hosted
on the same web page as the CIS. Following the deacti-
vation of the postsurvey link, instructors are sent a
summary report detailing the performance of their class
compared to classes of a similar level.
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V. STATISTICAL RELIABILITY TESTING

Below, we use classical test theory to investigate the
reliability of the assessment, including test and question
difficulty, time to completion reliability, the discrimination
of the instrument and individual questions, the internal
consistency of the instrument, test-retest reliability, and
concurrent validity.

A. Data sources

We conducted statistical reliability tests on data collected
using the most recent version of the instrument. These data
include students from 27 different institutions and 58
distinct courses who have taken the PLIC at least once
between August 2017 and December 2018. We had 41
courses from Ph.D. granting institutions, 4 from master’s
granting institutions, and 13 from two- or four-year
colleges. The majority of the courses (33) were at the
first-year level with 25 at the beyond-first-year level.
Only valid student responses were included in the

analysis. To be considered valid, a respondent must
(1) click submit at the end of the survey,
(2) consent to participate in the study,
(3) indicate that they are at least 18 years of age,
(4) and spend at least 30 sec on at least one of the

four pages.
The time cutoff (criteria 4) was imposed because it took

a typical reader approximately 20 sec to randomly click
through each page, without reading the material. Students
who spent too little time could not have made a legitimate
effort to answer the questions. Of these valid responses,
pre- and postresponses were matched for individual stu-
dents using the student ID and/or full name provided at the
end of the survey. The time cutoff removed 181 (7.6%)
students from the matched dataset.
We collected at least one valid survey from 4329 students

and matched pre- and postsurveys from 2189 students.
The demographic distribution of these data are shown in
Table V. We have collapsed all physics, astronomy, and
engineering physics majors into the “physics” major
category. Instructors reported the estimated number of
students enrolled in their classes, which allow us to
estimate response rates. The mean response rate to the
presurvey was 64%� 4%, while the mean response rate to
the postsurvey was 49%� 4%.
As part of the validation process, 20% of respondents

were randomly assigned open-response versions of the
PLIC during the 2017–2018 academic year. As such, some
students in our matched dataset saw both a closed-response
and open-response version of the PLIC. Table VI presents
the number of students in the matched dataset that saw each
version of the PLIC at pre- and postinstruction. Additional
analysis of the open-response data will be included in a
future publication, but in the analyses presented here, we
focus solely on the closed-response version of the PLIC

(1911 students completed both a closed-response presurvey
and a closed-response postsurvey).

B. Test and question scores

In Fig. 1 we show the matched pre- and postsurvey
distributions (N ¼ 1911) of respondents’ total scores on
the PLIC. The average total score on the presurvey is
5.25� 0.05 and the average score on the postsurvey is
5.52� 0.05. The data follow an approximately normal
distribution with roughly equal variances in pre- and
postscores. For this reason, we use parametric statistical
tests to compare paired and unpaired sample means.
The pre- and postsurvey means are statistically different
(paired t test, p < 0.001) with a small effect size (Cohen’s
d ¼ 0.23).
In addition to overall PLIC scores, we also examined

scores on individual questions (Fig. 2, i.e., question

TABLE V. Percentage of respondents in valid pre-, post-, and
matched datasets broken down by gender, ethnicity, and major.
Students had the option to not disclose this information, so
percentages may not sum to 100%.

Pre Post Matched

Total 3635 2883 2189

Gender
Women 39% 39% 40%
Men 59% 60% 59%
Other 0.5% 0.3% 0.4%

Major
Physics 18% 19% 20%
Engineering 43% 44% 45%
Other science 31% 29% 29%
Other 5.7% 5.8% 5.7%

Race or ethnicity
American Indian 0.7% 0.6% 0.5%
Asian 25% 26% 28%
African American 2.8% 2.6% 2.4%
Hispanic 4.3% 5.3% 4.8%
Native Hawaiian 0.4% 0.4% 0.4%
White 62% 61% 61%
Other 1.3% 1.6% 1.2%

TABLE VI. Number of students in the matched dataset who
took each version of the PLIC. The statistical analyses focus
exclusively on students who completed both a closed-response
presurvey and closed-response postsurvey.

Presurvey version Postsurvey version N

Closed response Closed response 1911
Open response 105

Open response Closed response 144
Open response 29
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difficulty). All questions differ in the number of closed-
response choices available and the score values of each
response. We simulated 10 000 students randomly selecting
three responses for each question to determine a baseline
difficulty for each question. These random guess scores are
indicated as black squares in Fig. 2.
The average score per question ranges from 0.30 to 0.80,

within the acceptable range for educational assessments
[54,55]. Correcting p values for multiple comparisons
using the Holm-Bonferroni method, each of the first seven
questions showed statistically significant increases between
pre- and post-test at the α ¼ 0.05 significance level.
The two questions with the lowest average score (Q2E

and Q3E) correspond to what to do next questions for
group 2. These questions correspond to two of the four
lowest scores through random guessing. Furthermore, the
highest valued responses on these questions involve chang-
ing the fit line, investigating the nonzero intercept, testing

other variables, and checking the assumptions of the model.
It is not surprising that students have low scores on these
questions, as they are seldom exposed to this kind of
investigation, particularly in traditional labs [27]. Although
these average scores are low (question difficulty is high),
they are still within the acceptable range of [0.3, 0.8] for
educational assessments [54,55].

C. Time to completion

We examined the relationship between a respondent’s
score and the amount of time they took to complete the
PLIC. The total assessment duration was defined as the
time elapsed from the moment a respondent opened
the survey to the moment they submitted it. This time
then encompasses any time that the respondent spent away
or disengaged from the survey.
The median time for completing the PLIC is 16.0�

0.4 min for the presurvey and 11.5� 0.3 min for the
postsurvey. The correlation between total PLIC score and
time to completion is r < 0.03 for both the presurvey and
the postsurvey, suggesting that there is no relationship
between a student’s score on the PLIC and the time they
take to complete the assessment.

D. Discrimination

Ferguson’s δ coefficient gives an indication of how well
an instrument discriminates between individual students by
examining how many unequal pairs of scores exist. When
scores on an assessment are uniformly distributed, this
index is exactly 1 [54]. A Ferguson’s δ greater than 0.90
indicates good discrimination among students. Because the
PLIC is scored on a nearly continuous scale, all but three
students received a unique score on the presurvey, and all
but two students received a unique score on the postsurvey.
Ferguson’s δ is equal to 1 for both the pre- and postsurveys.
We also examined how well each question discriminates

between high- and low-performing students using question-
test correlations (that is, correlations between respondents’
scores on individual questions and their score on the full
test). Question-test correlations are greater than 0.38 for all
questions on the presurvey and greater than 0.42 for all
questions on the postsurvey. None of these question-test
correlations are statistically different between the pre- and
postsurveys (Fisher transformation) after correcting for
multiple testing effects (Holm-Bonferroni α < 0.05). All
of these correlations are well above the generally accepted
threshold for question-test correlations, r ≥ 0.20 [54].

E. Internal consistency

While the PLIC was designed to measure critical
thinking, our definition of critical thinking acknowledges
that it is not a unidimensional construct. To confirm that
the PLIC does indeed exhibit this underlying structure,
we performed a principal component analysis (PCA) on

FIG. 1. Distributions of respondents’ matched pre- and post-
scores on the PLIC (N ¼ 1911). The average score obtained by
experts is marked with a black vertical line.

FIG. 2. Average score (representing question difficulty) for
each of the 10 PLIC questions. The average expected score that
would be obtained through random guessing is marked with a
black square. Scores on the first seven questions are statistically
different between the pre- and postsurveys (Mann-Whitney U,
Holm-Bonferroni corrected α < 0.05).
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question scores. PCA is a dimensionality reduction tech-
nique that finds groups of question scores that vary
together. In a unidimensional assessment, all questions
should group together, and so there would only be one
principal component to explain most of the variance.
We performed a PCA on matched presurveys and

postsurveys and found that six principal components were
needed to explain at least 70% of the variance in 10 PLIC
question scores in both cases. The first three principal
components can explain 45% of the variance in respon-
dents’ scores. It is clear, therefore, that the PLIC is not a
single construct assessment. The first three principal
components are essentially identical between the pre-
and postsurveys (their inner products between the pre-
and postsurvey are 0.98, 0.97, and 0.94, respectively).
Cronbach’s α is typically reported for diagnostic assess-

ments as a measure of the internal consistency of the
assessment. However, as argued elsewhere [21,56],
Cronbach’s α is primarily designed for single construct
assessments and depends on the number of questions as
well as the correlations between individual questions.
We find that α ¼ 0.54 for the pre-survey and α ¼ 0.60

for the post-survey, well below the suggested minimum
value of α ¼ 0.80 [57] for a single construct assessment.
We conclude, then, in accordance with the PCA results
above, that the PLIC is not measuring a single construct
and Cronbach’s α cannot be interpreted as a measure of
internal reliability of the assessment.

F. Test-retest reliability

The repeatability or test-retest reliability of an assess-
ment concerns the agreement of results when the assess-
ment is carried out under the same conditions. The
test-retest reliability of an assessment is usually measured
by administering the assessment under the same conditions
multiple times to the same respondents. Because students
taking the PLIC a second time had always received some
physics lab instruction, it was not possible to establish test-
retest reliability by examining the same students’ individual
scores. Instead, we estimated the test-retest reliability of the
PLIC by comparing the presurvey scores of students in the
same course in different semesters. Assuming that students
attending a particular course in one semester are from the
same population as those who attend that same course in a
later semester, we expect preinstruction scores for that
course to be the same in both semesters. This serves as a
measure of the test-retest reliability of the PLIC at the
course level rather than the student level.
In all, there were six courses from three institutions

where the PLIC was administered prior to instruction in
at least two separate semesters, including two courses
where it was administered in three separate semesters.
We performed ANOVA evaluating the effect of semester on
average prescore and report effect sizes as η2 for each of the
six courses. When the between-groups degrees of freedom

are equal to 1 (i.e., there are only two semesters being
compared), the results of the ANOVA are equal to those
obtained from an unpaired t test with F ¼ t2. The results
are shown in Table VII.
The p values indicate that presurvey means were not

statistically different between semesters for any class other
than class C, but these p values have not been corrected for
multiple comparisons. After correcting for multiple testing
effects using either the Bonferroni or Holm-Bonferroni
method at α < 0.05 significance, presurvey means were not
statistically different for class C.
Given the possibility of small variations in class pop-

ulations from one semester to the next, it is reasonable to
expect small effects to arise on occasion, so the moderate
difference in presurvey means for class C is not surprising.
As we collect data from more classes, we will continue to
check the test-retest reliability of the instrument in this
manner.

G. Concurrent validity

We define concurrent validity as a measure of the
consistency of performance with expected results. For
example, we expect that from either instruction or selection
effects, performance on the PLIC should increase with
greater physics maturity of the respondent. We define
physics maturity by the level of the lab course that
respondents were enrolled in when they took the PLIC.
To assess this form of concurrent validity, we split our

matched dataset by physics maturity. This split dataset
included 1558 respondents from first-year (FY) labs,

TABLE VII. Summary of test-retest results comparing presur-
veys from multiple semesters of the same course.

Class Semester N Pre avg. Comparisons

Class A Fall 2017 59 5.2� 0.3 Fð2; 363Þ ¼ 0.192
Spring 2018 92 5.3� 0.2 p ¼ 0.826
Fall 2018 215 5.24� 0.14 η2 ¼ 0.001

Class B Fall 2017 79 5.5� 0.2 Fð2; 203Þ ¼ 0.417
Spring 2018 36 5.7� 0.4 p ¼ 0.660
Fall 2018 91 5.5� 0.2 η2 ¼ 0.004

Class C Fall 2017 90 5.8� 0.3 Fð1; 207Þ ¼ 4.54
Fall 2018 119 5.50� 0.17 p ¼ 0.034

η2 ¼ 0.021

Class D Spring 2018 40 6.3� 0.3 Fð1; 54Þ ¼ 0.054
Fall 2018 16 6.2� 0.7 p ¼ 0.818

η2 ¼ 0.001

Class E Fall 2017 142 5.0� 0.2 Fð1; 429Þ ¼ 1.37
Fall 2018 289 4.79� 0.12 p ¼ 0.153

η2 ¼ 0.005

Class F Spring 2018 95 5.0� 0.2 Fð1; 182Þ ¼ 1.89
Fall 2018 89 5.1� 0.2 p ¼ 0.171

η2 ¼ 0.010
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353 respondents from beyond-first-year (BFY) labs, and
78 physics experts. Figure 3 compares the performance
on the presurvey by physics maturity of the respondent.
In Table VIII, we report the average scores for respon-
dents for both the pre- and postsurveys across maturity
level. The significance level and effect sizes between
pre- and postmean scores within each group are also
indicated.
There is a statistically significant difference between

pre- and postsurvey means for students trained in FY labs
with a small effect size, but not in BFY labs.
An ANOVA comparing pre-survey scores across physics

maturity (FY, BFY, expert) indicates that physics maturity
is a statistically significant predictor of presurvey scores
[Fð2; 1986Þ ¼ 203, p < 0.001] with a large effect size
(η2 ¼ 0.170). The large differences in means between
groups of differing physics maturity, coupled with the
small increase in mean scores following instruction at both
the FY and BFY level, may imply that these differences
arise from selection effects rather than cumulative instruc-
tion. This selection effect has been seen in other evaluations
of students’ lab sophistication as well [58].
Another measure of concurrent validity is through the

impact of lab courses that aim to teach critical thinking on

student performance. We grouped FY students according to
the type of lab their instructor indicated they were running
as part of the course information survey. The data include
273 respondents who participated in FY labs designed to
teach critical thinking as defined for the PLIC (CTLabs)
and 1285 respondents who participated in other FY physics
labs. Boxplots of these scores split by lab type are shown
in Fig. 4.
We fit a linear model predicting postscores as a function

of lab treatment and prescore:

PostScorei ¼ β0 þ β1 × CTLabsi þ β2 × PreScorei: ð4Þ

The results are shown in Table IX. We see that, controlling
for prescores, lab treatment has a statistically significant
impact on postscores; students trained in CTLabs perform
0.52 points higher, on average, at post-test compared to
their counterparts trained in other labs with the same
prescore.

H. Partial sample reliability

The partial sample reliability of an assessment is a
measure of possible systematics associated with selection
effects (given that response rates are less than 100%
for most courses) [56]. We compared the performance of
matched respondents (those who completed a closed-
response version of both the pre- and postsurvey) to

FIG. 3. Boxplots comparing presurvey scores for students in
FYand BFY labs, and experts. Horizontal lines indicate the lower
and upper quartiles and the median score. Scores lying outside
1.5 × IQR (inter-quartile range) are indicated as outliers.

TABLE VIII. Average scores across levels of physics maturity,
where N is the number of matched responses, except for experts
who only filled out the survey once. Significance levels and effect
sizes are reported for differences between the pre- and post-
survey means.

N Pre avg. Post avg. p d

FY 1558 5.15� 0.05 5.45� 0.06 <0.001 0.215
BFY 353 5.69� 0.12 5.81� 0.13 0.095 0.089
Experts 78 7.6� 0.2

FIG. 4. Boxplots of students’ total scores on the PLIC grouped
by the type of lab students participated in. Horizontal lines
indicate the lower and upper quartiles and the median score.
Scores lying outside 1.5 × IQR are labeled as outliers.

TABLE IX. Linear model for PLIC postscore as a function of
lab treatment and prescore.

Variable Coefficient p

Constant, β0 4.6� 0.3 <0.001
CTLabs, β1 0.52� 0.15 <0.001
Prescore, β2 0.25� 0.05 <0.001
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respondents who completed only one closed-response
survey. The results are summarized in Table X. Means
are statistically different between the matched and
unmatched datasets for both the pre- and postsurvey.
These biases, though small, may still have a meaningful

impact on our analyses, given that we have neglected
certain lower performing students (particularly for the tests
of concurrent validity). We address these potential biases
by imputing our missing data in Appendix A. This analysis
indicates that the missing students did not change the
results.

VI. SUMMARY AND CONCLUSIONS

We have presented the development of the PLIC for
measuring student critical thinking, including tests of its
validity and reliability. We have used qualitative and
quantitative tools to demonstrate the PLIC’s ability to
measure critical thinking (defined as the ways in which
one makes decisions about what to trust and what to do)
across instruction and general physics training. There are
several implications for researchers and instructors that
follow from this work.
For researchers, the PLIC provides a valuable new

tool for the study of educational innovations. While
much research has evaluated student conceptual gains,
the PLIC is an efficient and standardized way to
measure students’ critical thinking in the context of
introductory physics lab experiments. As the first such
research-based instrument in physics, this facilitates the
exploration of a number of research questions. For
example, do the gender gaps common on concept
inventories [17] exist on an instrument such as the
PLIC? How do different forms of instruction impact
learning of critical thinking? How do students’ critical
thinking skills correlate with other measures, such as
grades, conceptual understanding, persistence in the
field, or attitudes towards science?
For instructors, the PLIC now provides a unique

means of assessing student success in introductory and
upper-division labs. As the goals of lab instruction

shift from reinforcing concepts to developing exper-
imentation and critical thinking skills, the PLIC can
serve as a much needed research-based instrument for
instructors to assess the impact of their instruction.
Based on the discrimination of the instrument, its use is
not limited to introductory courses. The automated
delivery system is straightforward for instructors to
use. The vast amounts of data already collected also
allow instructors to compare their classes to those
across the country.
In future studies related to PLIC development and use,

we plan to evaluate patterns in students’ responses through
cluster and network analysis. Given the use of multiple
response questions and similar questions for the two
hypothetical groups, these techniques will be useful in
identifying related response choices within and across
questions. We also intend to investigate how students’
conceptual understanding of mechanics, as measured by
other mechanics diagnostic assessments, relates to perfor-
mance on the PLIC. Also, the analyses thus far have largely
ignored data collected from the open-response version of
the PLIC. Unlike the closed-response version, the open-
response version has undergone very little revision over the
course of the PLIC’s development and we have collected
over 1000 responses. We plan to compare responses to the
open- and closed-response versions to evaluate the different
forms of measurement. The closed-response version mea-
sures students’ abilities to critique and choose among
multiple ideas (accessible knowledge), while the open-
response version measures students’ abilities to generate
these ideas for themselves (available knowledge). The
relationship between the accessibility and availability of
knowledge has been studied in other contexts [59] and it
will be interesting to explore this relationship further with
the PLIC.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. 1611482.
We are grateful to undergraduate researchers Saaj
Chattopadhyay, Tim Rehm, Isabella Rios, Adam
Stanford-Moore, and Ruqayya Toorawa who assisted in
coding the open-response surveys. Peter Lepage, Michelle
Smith, Doug Bonn, Bethany Wilcox, Jayson Nissen, and
members of CPERL provided ideas and useful feedback on
the manuscript and versions of the instrument. We are very
grateful to Heather Lewandowski and Bethany Wilcox for
their support developing the administration system. We
would also like to thank all of the instructors who have used
the PLIC with their courses, especially Mac Stetzer, David
Marasco, and Mark Kasevich for running the earliest drafts
of the PLIC.

TABLE X. Scores from respondents who took both a closed-
response pre- and post-survey (matched dataset) and students
who only took one closed-response survey (unmatched dataset).
p values and effect sizes d are reported for the differences
between the matched and unmatched datasets in each case.

Survey Dataset N Avg. p d

Pre Matched 1911 5.25� 0.05
0.011 0.090

Unmatched 1376 5.15� 0.06

Post Matched 1911 5.52� 0.05
<0.001 0.242

Unmatched 797 5.22� 0.09
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APPENDIX A: MULTIPLE IMPUTATION
ANALYSIS

In the analyses in the main text we used only PLIC
data from respondents who had taken the closed-
response PLIC at both pre- and postsurvey. As discussed
in Sec. V H, the missing data biases the average scores
toward higher scores. It is likely that this bias is due to a
skew in representation toward students who receive
higher grades in the matched dataset compared to the
complete dataset [60]. This bias is problematic for two
reasons, one of interest to researchers and the other of
interest to instructors. For researchers, the analyses above
may not be accurate when taking into account a larger
population of students (including lower-performing stu-
dents). Instructors using the PLIC in their classes who
achieve high participation rates may be led to incorrectly
conclude that their students performed below average
because their class included a larger proportion of low-
performing students. Using imputation, we quantified the
bias in the matched dataset to more accurately represent
PLIC scores across a wider group of students and to
be transparent to instructors wishing to use the PLIC in
their classes.
Imputation is a technique for filling in missing values

in a dataset with plausible values for more complete
datasets. In the case of the PLIC, we imputed data for
respondents who completed the closed-response version
of either the pre- or postsurvey, but not both (2173
respondents). The number of PLIC closed-response
surveys collected is summarized in Table XI for both
pre- and postsurveys. The 245 students in Table XI who
are missing both pre- and postsurvey data represent the
students who completed at least one open-response
survey, but no closed-response surveys. Without any
information about how these students perform on a
closed-response PLIC survey or other useful information
such as their grades or scores on standardized assess-
ments, these data cannot be reliably imputed.
We used MICE [61] with predictive mean matching

(pmm) to impute the missing closed-response data. These
methods have been discussed previously in Refs. [62,63]
and so we do not elaborate on them here. For each
respondent, we used the levels of the lab they were enrolled

in (FY or BFY), the type of lab they were enrolled in
(CTLabs or other), and the score on the closed-response
survey they completed to estimate their missing score.
MICE operates by imputing our dataset M times, creating
M complete datasets, each containing data from 4084
students. Each of these M datasets will have somewhat
different values for the imputed data [62,63]. If the
calculation is not prohibitive, it has been recommended
thatM be set to the average percentage of missing data [63],
which in our case is 27. After constructing our M imputed
datasets, we conducted analyses (means, t tests, effect sizes,
regressions) on these datasets separately, then combined
our M results using Rubin’s rules to calculate standard
errors [64].
Using our imputed datasets, we now demonstrate that the

results shown above concerning the overall scores and
measures of concurrent validity are largely the same as
with the imputed data set. We did not examine measures
involving individual questions or their correlations (ques-
tion scores, discrimination, internal consistency) as the
variability between questions makes the predictions
through imputation unreliable. The test-retest reliability
measure included all valid closed-response pre-survey
responses, and so there is much less missing data, making
the imputation unnecessary.

1. Test scores

Mean scores for the matched, total, and imputed
datasets are shown in Table XII. The presurvey mean
of the imputed dataset is not statistically different from
the presurvey mean of the matched dataset or the valid
presurveys dataset. Similarly, the postsurvey mean of the
imputed dataset is not statistically different from the
postsurvey mean of the valid-post surveys dataset. There
is, however, a statistically significant difference in post-
survey means between the matched and imputed datasets
(t test, p < 0.05) with a small effect size (Cohen’s
d ¼ 0.08). Additionally, as with the matched dataset,
there is a statistically significant difference between pre-
and postmeans in the imputed dataset (t test, p < 0.001).
However, the effect size is smaller (Cohen’s d ¼ 0.16)
than in the matched dataset.

TABLE XI. Number of PLIC closed-response pre- and post-
surveys collected.

Postsurvey
missing

Postsurvey
completed

Presurvey missing 245 797
Presurvey completed 1376 1911

TABLE XII. Average scores for datasets containing only
matched students, all valid responses, and the complete set of
students including imputed scores.

Dataset N Pre avg. Post avg.

Matched 1911 5.25� 0.05 5.52� 0.05
Valid presurveys 3287 5.21� 0.04
Valid postsurveys 2708 5.43� 0.05
Imputed 4046 5.20� 0.04 5.42� 0.04
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2. Concurrent validity

Our imputed dataset contains 3428 respondents
from FY labs and 656 respondents from BFY labs.
Because the experts only filled out the survey once, there
is no missing data and imputation is unnecessary. In
Table XIII, we report again the average scores for
students enrolled in FY and BFY level physics lab
courses and experts.
As in the matched dataset, there is a statistically

significant difference in pre- and postmeans for students
trained in FY labs, but the effect size is smaller. Again,
there is no statistically significant difference in pre- and
postmeans for students trained in BFY labs. Again, an
ANOVA comparing presurvey scores across physics matu-
rity indicates that physics maturity is a statistically signifi-
cant predictor or presurvey scores ½Fð2; 6210.5Þ ¼ 218.3;
p < 0.001� with a large effect size (η2 ¼ 0.101).
Our imputed dataset contained a total of 505 students

who participated in FY CTLabs and 2923 students who
participated in other FY physics labs. The linear fit for
postscores using prescores and lab type as predictors
(see Eq. (4) again found that students trained in CTLabs

outperform their counterparts in other labs. Coefficients
and significance levels are reported in Table XIV.

3. Summary and limitations

In this Appendix, we have demonstrated via multiple
imputation that PLIC scores may be, on average, slightly
lower than those reported in the main article. This is likely
due to a skew in representation toward higher-performing
students in the matched dataset and is more prevalent on the
postsurvey than the presurvey. This bias does not, however,
affect the conclusions of the concurrent validity section of
the main article. There is a statistically significant differ-
ence in prescores between students enrolled in FYand BFY
labs, as well as experts. Students trained in CTLabs score
higher on the post-survey, on average, than students trained
in other physics labs after taking pre-survey scores into
account.
The main limitation to imputing our data in this way

stems from the reliability of the imputed values. As briefly
mentioned above, we lack information about students’
grades or their scores on other standardized assessments,
which have been shown to be useful predictors of student
scores on diagnostic assessments like the PLIC [62].
Without this information, the reliability of the imputed
dataset is limited. Estimating missing PLIC scores using
the predictor variables above (level and type of lab a student
was enrolled in and their score on one closed-response
survey) likely provides a better estimate of population
distributions than simply ignoring the missing data, but
much of the variance in scores is not explained by these
variables alone.

TABLE XIII. Scores across levels of physics maturity, where N is the number of responses in the imputed dataset
(except for experts). Significance levels and effect sizes are reported for differences in pre- and post-test means.

N Pre avg. Post avg. p d

FY 3428 5.12� 0.04 5.36� 0.05 <0.001 0.173
BFY 656 5.62� 0.10 5.74� 0.10 0.052 0.088
Experts (nonimputed) 78 7.6� 0.2

TABLE XIV. Linear model for PLIC postscore as a function of
lab treatment and prescore using the imputed dataset.

Variable Coefficient p

Constant, β0 4.3� 0.3 <0.001
CTLabs, β1 0.40� 0.13 <0.001
Pre-score, β2 0.27� 0.06 <0.001

WALSH, QUINN, WIEMAN, and HOLMES PHYS. REV. PHYS. EDUC. RES. 15, 010135 (2019)

010135-14



APPENDIX B: SAMPLE PLIC QUESTIONS

A full version of the PLIC can be found [20]. Here, we show an excerpt from the PLIC, providing examples of the
multiple choice and multiple response questions that can be found on the assessment.
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FIG. 5. Excerpt from page four of the PLIC describing the methods of the two hypothetical groups of students. The final multiple
choice questions ask respondents which group they think did a better job of testing the model, while the multiple response question asks
students to elaborate on their reasoning.
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